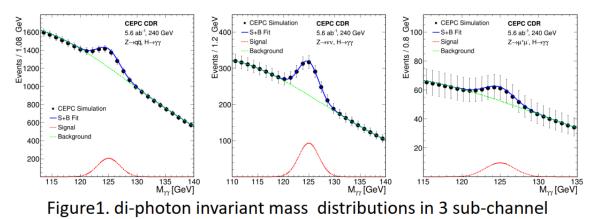
Weekly update


FANGYI GUO

Previous review

Higgs to di-photon physics analysis in CEPC:

- CEPC_v4, 240GeV, $\mathcal{L} = 5.6 f b^{-1}$
- Whizard 1.95 + Fast simulation MC
- 2 fermion background is the dominant
- FSClasser event reconstruction and catbased event selection

• Results: $\delta(Br \times \sigma) = 6.84\%$ in combined channel, 9.84% in $q\bar{q}\gamma\gamma$ channel

Results

The combination of three sub-channel provides a final result of $\sigma(ZH) \times BR(H \rightarrow \gamma\gamma)$ measurement precision

Sub-channel	$q\overline{q}\gamma\gamma$	Ιἶγγ	ν⊽γγ	combined
precision	9.84%	23.7%	10.5%	6.84%

Event selection

CDR in last year: $E_{\gamma 1} > 35 GeV$ $35 GeV < E_{\gamma 2} < 96 GeV$ $cos \theta_{\gamma \gamma} > -0.95, cos \theta_{j j} > -0.95$ $pT_{\gamma 1} > 20 GeV, pT_{\gamma 1} > 30 GeV$ $110 GeV < m_{\gamma \gamma} < 140 GeV$ $125 GeV < E_{\gamma \gamma} < 145 GeV$ $min |cos \theta_{\gamma j}| < 0.9$ Present:

$$\begin{split} E_{\gamma 1} &> 25 GeV \\ 35 GeV &< E_{\gamma 2} < 96 GeV \\ \cos \theta_{\gamma \gamma} &> -0.95, \cos \theta_{jj} > -0.95 \\ pT_{\gamma 1} &> 20 GeV, pT_{\gamma 1} > 30 GeV \\ 110 GeV &< m_{\gamma \gamma} < 140 GeV \\ E_{\gamma \gamma} &< 120 GeV \\ \min \left| \cos \theta_{\gamma j} \right| < 0.9 \end{split}$$

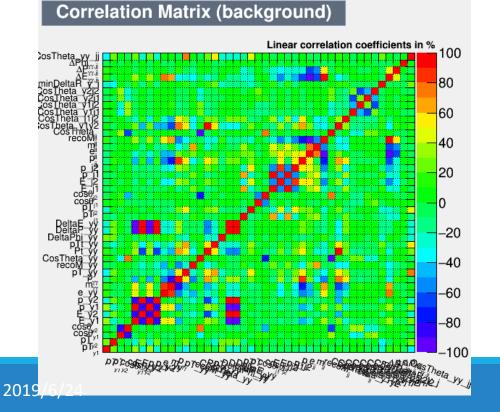
In order to avoid the bump in background $m_{\gamma\gamma}$ distribution after MVA

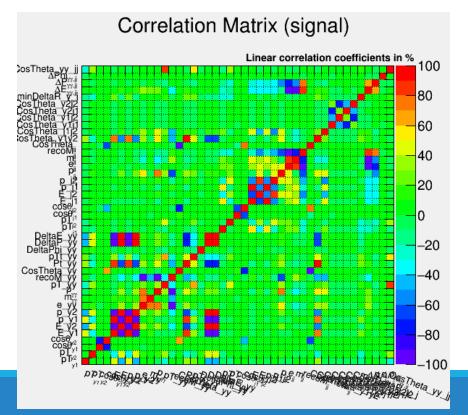
Considered variables:

- P, E, pT, *cosθ* of two photon and 2 jets
- P, E, pT, $cos\theta$, recoil mass, pTt, Pt* of di-photon system
- P, E, mass, recoil mass, $cos\theta$ of jj system
- ΔP , ΔE , $\Delta \phi$ between two photon, $\gamma \gamma$ -qq
- Cosine angle between 2 photon, 2 jets, 1 photon and 1 jet, $\gamma\gamma$ and jj system.
- Minimum ΔR between any photon and jet

Totally 42 variables

Separation power:


$$\langle S^2 \rangle = \frac{1}{2} \int \frac{(\hat{y}_s(y) - \hat{y}_b(y))^2}{\hat{y}_s(y) + \hat{y}_b(y)} dy.$$

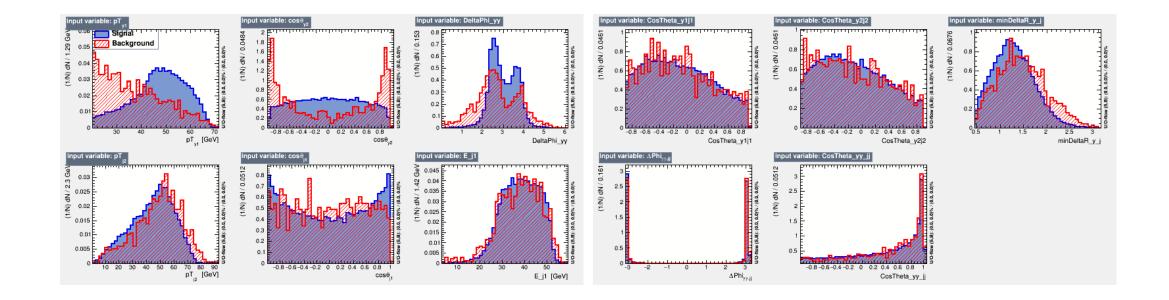

Pt*: Di-photon P projected perpendicular to the diphoton thrust axis.(similar as pTt but replace pT with P) \overrightarrow{P}

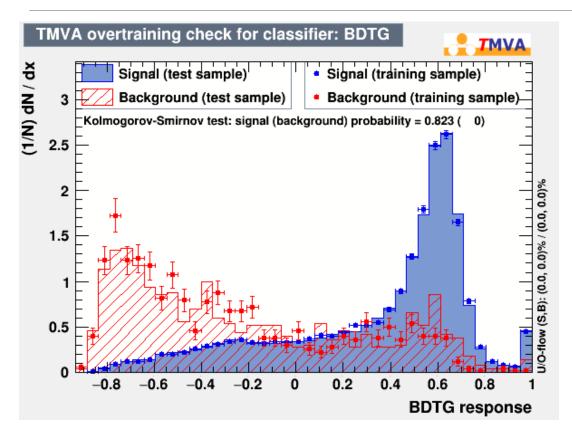
$$\mathsf{Pt}^* = |(\overrightarrow{P_1} + \overrightarrow{P_2}) \times \frac{\overrightarrow{P_1} - \overrightarrow{P_2}}{|\overrightarrow{P_1} - \overrightarrow{P_2}|}|$$

Variable correlation:

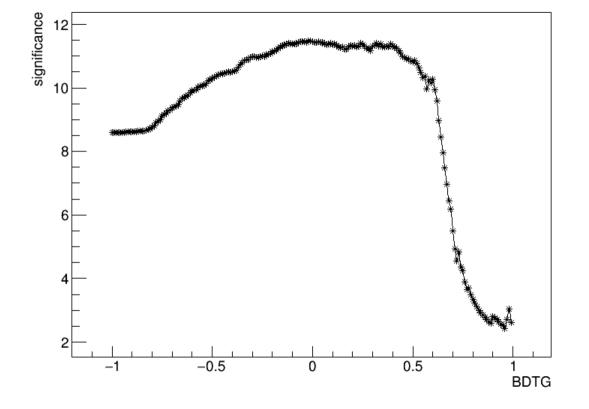
- Remove high $m_{\gamma\gamma}$ -relative variables $|Corr_{v-m_{\gamma\gamma}}| < 30$
- Remove high co-related variables $|Corr_{v_1-v_2}| < 50$

Remaining variable: 11 variables


variable	Separation power
pT_y1	0.391071
cosTheta_y2:	0.388952
DeltaPhi_yy:	0.304471
minDeltaR:	0.089791
cosTheta_j1:	0.083385


pT_j2	0.077177
e_j1:	0.030657
costheta_y2j2:	0.026474
costheta_y1j1:	0.022066
DeltaPhi_yy_jj:	0.012697
DeltaCosTheta_yy_jj:	0.011999

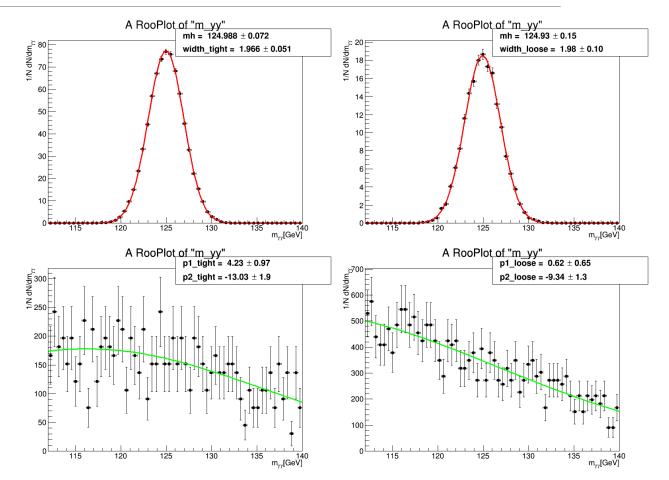
MVA method: Boost decision tree


factory->BookMethod(TMVA::Types::kBDT,"BDTG",

"!H:!V:NTrees=900:nEventsMin=50:BoostType=Grad:Shrinkage=0.06:UseBaggedGrad:GradBaggingFraction =0.6:nCuts=20:MaxDepth=3");

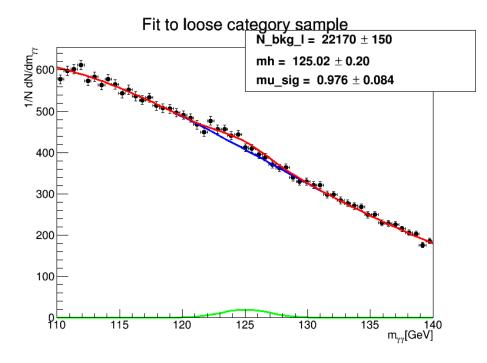
Categorization: maximum $\sigma = N_{sig} / \sqrt{N_{sig} + N_{bkg}}$ count N in $m_{\gamma\gamma} \in [120, 130] GeV$

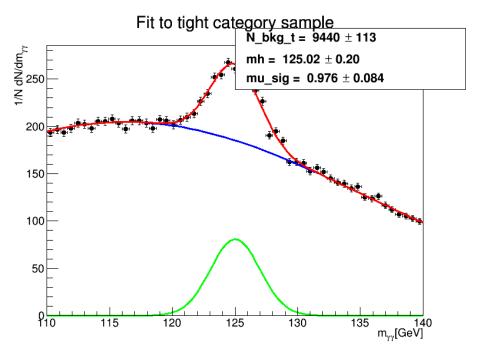
Kcut: BDTG=-0.01 Tight category: BDTG>-0.01 Nsig: 738.90 Nbkg: 3408.73 significance: 11.47 Loose category: BDTG<-0.01 Nsig: 178.71 Nbkg: 7044.71 significance: 2.10 Combined significance: 11.93


Fit sample

Signal: gauss function

Background: 2nd polynomial exponential PDF


Combine signal and background sample into $PDF_{sum} = \mu \times N_{sig}^{SM} \times PDF_{sig} + N_{bkg} \times PDF_{bkg}$ in 2 categories


Plot: fit in tight signal(left up), loose signal(right up), tight background(left b), loose background(right b)

Fit result

Simultaneous fit in 2 categories:

 $\mu = 0.97 \pm 0.084$

2019/6/24

Conclusion

MVA could improve the performance in Higgs to di-photon channel by ~20%

• Significance:

8.60 before applying MVA method (mass region [120, 130]GeV)

- 11.93 after the BDT categorization
- Precision:
 9.84% in CDR
 11% after adjusting the event selection
 8.4% after BDT