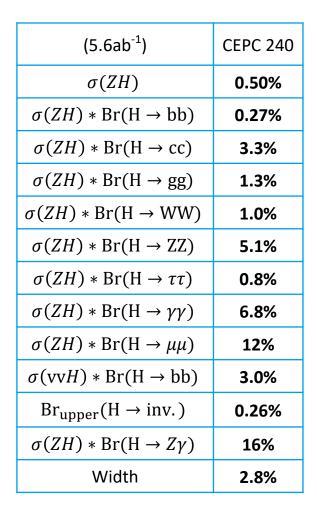


qqyy from Guo Fangyi

Add BDT response for 2d fit.

qqyy: 9.84% -> 6.60% yy: 6.8% -> 5.4%



Higher Energy Extrapolation @ CEPC Higgs Kaili Zhang

2019-06-10

Existing results:240GeV, 5.6iab

• Fcc-ee (CERN-ACC-2018-0057) did:

• 0.2 iab 350GeV + 1.5 iab 365GeV

\sqrt{s} (GeV)	240		365	
Luminosity (ab^{-1})	5		1.5	
$\delta(\sigma BR)/\sigma BR$ (%)	HZ	$\nu\overline{\nu}H$	HZ	$\nu\overline{\nu}H$
${\rm H} \rightarrow {\rm any}$	± 0.5		± 0.9	
${\rm H} \rightarrow {\rm b}\bar{\rm b}$	± 0.3	± 3.1	± 0.5	± 0.9
$H \to c \bar c$	± 2.2		± 6.5	± 10
$\mathrm{H} \to \mathrm{gg}$	± 1.9		± 3.5	± 4.5
$\rm H \rightarrow \rm W^+ \rm W^-$	± 1.2		± 2.6	± 3.0
$\mathrm{H} \to \mathrm{ZZ}$	± 4.4		± 12	± 10
$H\to\tau\tau$	± 0.9		± 1.8	± 8
$H\to\gamma\gamma$	± 9.0		± 18	± 22
${\rm H} \rightarrow \mu^+ \mu^-$	± 19		± 40	
${\rm H} \rightarrow {\rm invisible}$	< 0.3		< 0.6	

- CEPC Temporary benchmark: 2 iab 360GeV
 - 360 saves 10% energy
 - not determined yet

Signal Cross Sections

- 240GeV:
 - ZH: 196.9; vvH: 6.2; interference: ~10% of vvH; about 318:10:1; (Z->vv : vvH = 6.4:1)
 - interference are ignored in the following extrapolation.
- 350GeV: (vvH ~ 100% Z->vv), (eeH ~ 60% Z->ee)
- 360GeV: (vvH ~ 117% Z->vv), (eeH ~ 67% Z->ee)
- 365GeV: (vvH ~ 126% Z->vv), (eeH ~ 71% Z->ee)

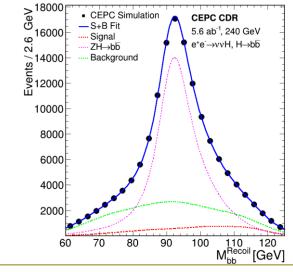
ZZ fusion (2%) also cannot be ignored.

fb	240	350	360	365	360/240
ZH	196.9	133.3	126.6	123.0	-36%
WW fusion	6.2	26.7	29.61	31.1	+377%
ZZ fusion	0.5	2.55	2.80	2.91	+460%
Tot	203.6		159.0		
Tot Events	1.14M		0.32M		

bkg cross sections

pb	240	350	360	365	365/240	
ee(γ)	930	336	325	319	-66%	
$\mu\mu(\gamma)$	5.3	2.2	2.1	2.1	-60%	
qq(γ)	54.1	24.7	23.2	22.8	-58%	
WW	16.7	10.4	10.0	9.81	-41%	
ZZ	1.1	0.66	0.63	0.62	-44%	
tt	١	0.155	0.317	0.369		
sZ	4.54	5.72	5.78	5.83	+28%	
sW	5.09	5.89	6.00	6.04	+19%	

Most channels are 4f bkg dominant, usually ZZ.

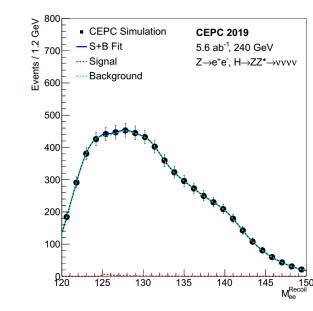

 $ee \rightarrow t\bar{t} \rightarrow WW^*b\bar{b}$ would be 6 jets/ llvv+2 jets. would have similar behavior with 4f.

Need MC sample to validate the performance.

Now Assume that $t\bar{t}$ would have 20% contribution similar with ZZ. From 0.63 to 0.7pb.

Extrapolation strategy

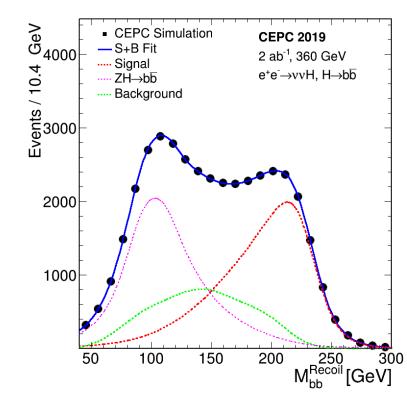
- yields: scale by cross section;
- shape:
 - dimuon: worse resolution; from ~0.3GeV to 1GeV;
 - diphoton: better resolution; from ~2.5GeV to 2GeV;
 - inv/rec mass:
 - if it is corresponding to Z/H system, would stay the same;
 - other recoil H/Z/W spectrum would also scale a factor to shift;


In 240GeV, vvH peak at 115GeV. Would shift to 235GeV instead.

bkg shape

CEPC

- phase space distribution, would spread to wider range;
 - scale 360/240, 1.5;
- if bkg scale factor 1.5, (or higher), range 120-150 would from 80-100.
 - information missing in current data files.
- In turn we assume bkg stay the same shape in signal region
 - scale 240/360, 149/269
- Would check the 360GeV sample for more details.



vvH->bb

CEPC

- Use Hao's fast simulation 360GeV sample
 - ZH and vvH BMR(Boson Mass Resolution) 4%, Eff 50%
 - Bkg scaled from 240 case
 - would be less if selection more strict;

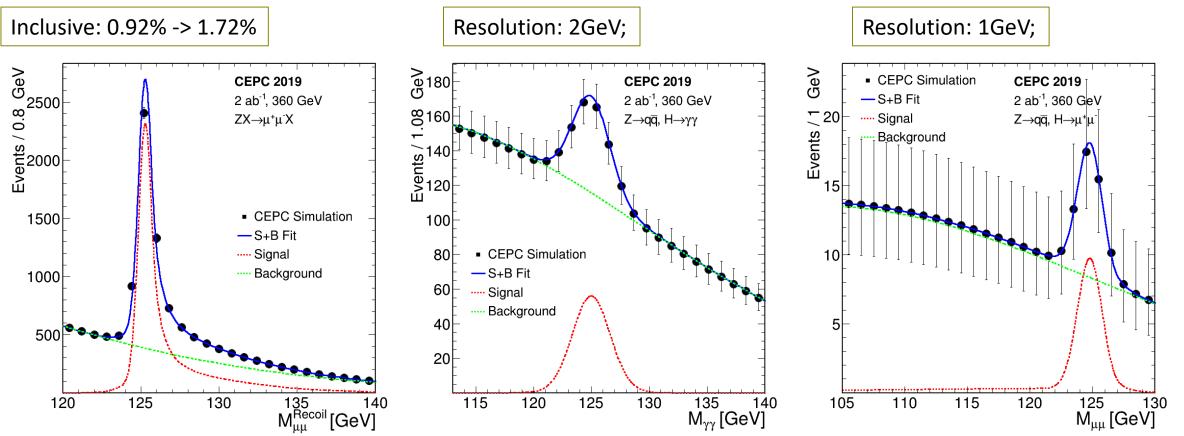
- Fix ZH part; vvH 0.95%;
- Float ZH part; vvH 0.99%;
- Considering other ZH constrain: 0.95%.

Results

Fcc:	
------	--

	5.6ab ⁻¹ , 240	2ab ⁻¹ , 360	1.5ab⁻¹, 360
$\sigma(ZH)$	0.50%	\	500
$\sigma(ZH) * Br(H \rightarrow bb)$	0.27%	0.62%	0.71%
$\sigma(ZH) * Br(H \rightarrow cc)$	3.3%	6.2%	7.2%
$\sigma(ZH) * Br(H \rightarrow gg)$	1.3%	2.4%	2.7%
$\sigma(ZH) * Br(H \rightarrow WW)$	1.0%	2.0%	2.3%
$\sigma(ZH) * Br(H \rightarrow ZZ)$	5.1%	12%	14%
$\sigma(ZH) * Br(H \rightarrow \tau \tau)$	0.8%	1.5%	1.7%
$\sigma(ZH) * Br(H \rightarrow \gamma \gamma)$	6.8%	9.4%	10.9%
$\sigma(ZH) * Br(H \rightarrow \mu\mu)$	12%	29%	33%
$\sigma(vvH) * Br(H \rightarrow bb)$	3.0%	0.95%	1.1%
$Br_{upper}(H \rightarrow inv.)$	0.26%	١	١
$\sigma(ZH) * Br(H \rightarrow Z\gamma)$	16%	25%	29%
Width	2.8%	1% ?	

\sqrt{s} (GeV)	240		365	
Luminosity (ab^{-1})	5		1.5	
$\delta(\sigma BR)/\sigma BR$ (%)	HZ	$\nu\overline{\nu}H$	HZ	$\nu\overline{\nu}\;H$
$H \rightarrow any$	± 0.5		± 0.9	
$H \rightarrow b\bar{b}$	± 0.3	± 3.1	± 0.5	± 0.9
$H \rightarrow c\bar{c}$	± 2.2		± 6.5	± 10
$\mathrm{H} \rightarrow \mathrm{gg}$	± 1.9		± 3.5	± 4.5
$H \rightarrow W^+W^-$	± 1.2		± 2.6	± 3.0
$\mathrm{H} ightarrow \mathrm{ZZ}$	± 4.4		± 12	± 10
$H\to\tau\tau$	± 0.9		± 1.8	± 8
$H \rightarrow \gamma \gamma$	± 9.0		± 18	± 22
$ H \rightarrow \mu^+ \mu^-$	± 19		± 40	
$H \rightarrow invisible$	< 0.3		< 0.6	


Generally, since the extrapolation is not so accurate, results are comparable. (bb is most different?)

For $H \rightarrow \gamma \gamma$ and $H \rightarrow \mu \mu$, resolution changes considered. Keep diphoton resolution ~(2.5GeV) : 10.5% 2.5GeV to 2GeV: 9.40%

Keep dimuon resolution ~(0.3GeV): 23% 0.3GeV to 1GeV: 29%

Plots

Discussion

- Current extrapolation
 - mainly scale yields
 - bkg could be even lower if correct analysis strategies are applied.
 - can not deal with W/Z fusion related channels and $\sigma(ZH)$
 - several channels are studied with m_{ee}^{recoil} and $m_{missing}$ would suffer;
 - need to look into 360GeV sample