

360GeV Extrapolation @ CEPC Higgs Combination

Kaili Zhang

CEPC Physics Workshop July 1st, 2019 Peking University

Higgs Physics @ CEPC

Kaili Zhang

 Z^*

Existing results:240GeV, 5.6iab

(240GeV,5.6ab ⁻¹)	CDR	2019.07	Related Report
$\sigma(ZH)$	0.50%		
$\sigma(ZH) * Br(H \rightarrow bb)$	0.27%		
$\sigma(ZH) * Br(H \rightarrow cc)$	3.3%		Yu Bai
$\sigma(ZH) * Br(H \rightarrow gg)$	1.3%		
$\sigma(ZH) * Br(H \rightarrow WW)$	1.0%		
$\sigma(ZH) * Br(H \rightarrow ZZ)$	5.1%		Kiuchi
$\sigma(ZH) * Br(H \rightarrow \tau \tau)$	0.8%		Dan Yu
$\sigma(ZH) * Br(H \rightarrow \gamma \gamma)$	6.8%	5.4%	Fangyi Guo
$\sigma(ZH) * Br(H \rightarrow \mu\mu)$	17%	12%	Kunlin RAN
$\sigma(vvH) * Br(H \rightarrow bb)$	3.0%		Hao Liang
$Br_{upper}(H \rightarrow inv.)$	0.41%	0.2%	Yuhang Tan
$\sigma(ZH) * Br(H \rightarrow Z\gamma)$	16%		
Width	2.8%		

Several channels are improved since last November.

Invisible and $\mu\mu$: Redo the analysis. $\gamma\gamma$: Applied MVA in qqyy channel.

See more details in their slides!

κ Framework result

Z → μμ, H → ττ channel, the signal will be $\kappa_Z^2 \kappa_\tau^2 / \Gamma_H$; For $\nu \nu H \rightarrow bb$, it's $\kappa_W^2 \kappa_b^2 / \Gamma_H$

See more in Zhen's report!

CE

Relative coupling measurement precision and the 95% CL upper limit on $\rm BR_{inv}^{\rm BSM}$						
	10-p	arameter fit	7-parameter fit			
Quantity	CEPC	CEPC CEPC+HL-LHC CEPC		CEPC+HL-LHC		
κ_b	1.3%	1.0%	1.2%	0.9%		
κ_c	2.2%	1.9%	2.1%	1.9%		
κ_g	1.5%	1.2%	1.5%	1.1%		
κ_W	1.4%	1.1%	1.3%	1.0%		
κ_{τ}	1.5%	1.2%	1.3%	1.1%		
κ_Z	0.25%	0.25%	0.13%	0.12%		
κ_{γ}	3.7%	1.6%	3.7%	1.6%		
κ_{μ}	8.7%	5.0%	—	_		
BR_{inv}^{BSM}	< 0.30%	< 0.30%	_	_		
Γ_H	2.8%	2.3%	_	_		

 $\sigma(ZH)$ 0.5%, κ_z 0.25%; Except κ_z , all the coupling are constrained by Higgs width; Could not be better than half width(1.4%).

2019/7/1

Higher Energy Run

- 350~365GeV Run: worthwhile
 - Over top threshold, EW/EFT/Theoretical part benefits;
 - Larger vvH cross section; Benefit width measurement
 - All constrained by width(2.8%), in current CEPC 240GeV run, Higgs coupling suffered;
 - Fcc-ee/ILC/CLIC all have similar plan
- Temporary benchmark: 2 iab @ 360GeV
 - Test the impact to Higgs measurement
 - 360 saves 10% energy with respect to 365 GeV
 - Not determined yet

The Plan for Fcc-ee (CERN-ACC-2018-0057) : 0.2iab 350GeV + 1.5iab 365GeV

Signal Cross Sections

• 240GeV:

2019/7/1

- ZH: 196.9; vvH: 6.2; interference: ~10% of vvH; about 318:10:1; (Z->vv : vvH = 6.4:1)
- interference are ignored in the following extrapolation.
- 350GeV: (vvH ~ 100% Z->vv), (eeH ~ 60% Z->ee)
- 360GeV: (vvH ~ 117% Z->vv), (eeH ~ 67% Z->ee)
- 365GeV: (vvH ~ 126% Z->vv), (eeH ~ 71% Z->ee)

fb	240	350	360	365	360/240
ZH	196.9	133.3	126.6	123.0	-36%
WW fusion	6.2	26.7	29.61	31.1	+377%
ZZ fusion	0.5	2.55	2.80	2.91	+460%
Tot	203.6		159.0		
Tot Events	1.14M		0.32M		

ZZ fusion (2%) also cannot be ignored.

Major background cross sections

In 240GeV, most channels are 4f bkg dominant, usually ZZ.

 $ee \rightarrow t\bar{t} \rightarrow WW^*b\bar{b}$ would be 6 jets/ llvv+2 jets. Would challenging for jet clustering.

√s (GeV)

Need further work to validate the performance.

Extrapolation strategy

- Yields: scale by cross section;
- Resolution:
 - Pick 2 benchmark channels to check the impact
 - dimuon: worse resolution; from ~0.3GeV to 1GeV;
 - diphoton: better resolution; from ~2.5GeV to 2GeV;
- Mass spectrum:
 - Z/H system would stay the same;
 - Try scale factors to describe the phase space shift, like $\frac{2}{3}$ (240/360).

vvH->bb, Full simulation

- See Hao's slides for further information
 - vvH Eff 60+%;
 - Bkg: 4f bkg full simulation, qq scaled from 240 case
 - tt MC not ready; Consider qq +20%;
 - 2d Recoil qq + Cos θ_{qq} Fit
 - Considering ZH constrain:
 - $\sigma(vvH) * Br(H \rightarrow bb):0.79\%$
 - 240GeV: 3%; big improvement;
 - ZH->bb (0.63%) share the anti-correlation -45%.

Results

Fcc:	
------	--

 \sqrt{s} (GeV)

C	ΈP	P,

	5.6ab⁻¹,	2ab⁻¹,	1.5ab⁻¹,
	240	360	360
$\sigma(ZH)$	0.50%	1% ?	
$\sigma(ZH) * Br(H \rightarrow bb)$	0.27%	0.63%	0.71%
$\sigma(ZH) * Br(H \rightarrow cc)$	3.3%	6.2%	7.2%
$\sigma(ZH) * Br(H \rightarrow gg)$	1.3%	2.4%	2.7%
$\sigma(ZH) * Br(H \rightarrow WW)$	1.0%	2.0%	2.3%
$\sigma(ZH) * Br(H \rightarrow ZZ)$	5.1%	12%	14%
$\sigma(ZH) * Br(H \rightarrow \tau \tau)$	0.8%	1.5%	1.7%
$\sigma(ZH) * Br(H \rightarrow \gamma \gamma)$	5.4%	8%	9.2%
$\sigma(ZH) * Br(H \rightarrow \mu\mu)$	12%	29%	33%
$\sigma(vvH) * Br(H \rightarrow bb)$	3%	0.79%	0.91%
$Br_{upper}(H \rightarrow inv.)$	0.2%	١	١
$\sigma(ZH) * Br(H \rightarrow Z\gamma)$	16%	25%	29%
Width	2.8%	~0.8%	

Luminosity (ab^{-1}) 5 1.5 $\delta(\sigma BR)/\sigma BR$ (%) $\nu\overline{\nu}$ H $\sqrt{\nu}$ H ΗZ ΗZ $H \rightarrow any$ ± 0.5 ± 0.9 $H \rightarrow b\bar{b}$ ± 0.3 ± 3.1 ± 0.5 ± 0.9 $H \to c\bar{c}$ ± 2.2 ± 6.5 ± 10 $\mathrm{H} \rightarrow \mathrm{gg}$ ± 1.9 ± 3.5 ± 4.5 $H \rightarrow W^+ W^ \pm 1.2$ ± 2.6 ± 3.0 $\mathrm{H} \rightarrow \mathrm{ZZ}$ ± 12 ± 4.4 ± 10 $H\to\tau\tau$ ± 0.9 ± 1.8 ± 8 $H \rightarrow \gamma \gamma$ ± 9.0 ± 18 ± 22 $H \rightarrow \mu^+ \mu^ \pm 19$ ± 40 $H \rightarrow invisible$ < 0.3< 0.6

240

Generally, since the extrapolation is not so accurate, results are comparable.

365

For $H \rightarrow \gamma \gamma$ and $H \rightarrow \mu \mu$, resolution changes considered. Keep diphoton resolution ~(2.5GeV) : 10.2% 2.5GeV to 2GeV: 9.2%

Keep dimuon resolution ~(0.3GeV): 23% 0.3GeV to 1GeV: 29%

*: $\sigma(ZH)$ estimated as 1%.

360 GeV Plots

240 GeV Plots

Discussion

- Current extrapolation
 - Mainly scale yields
 - bkg could be even lower if correct analysis strategies are applied.
 - Can not deal with W/Z fusion related channels and $\sigma(ZH)$
 - several channels are studied with m_{ee}^{recoil} and $m_{missing}$ would suffer;
 - Preliminary estimation, need further work

Review

- Study ZZ fusion to improve the width
- vvH 2d pdf: distribution independent
- vvH ttbar; qqbkg selection;
- vvH fix qq mass=Higgs; To see Recoil Mass
- Dimuon; diphoton resolution change
- Inclusive ZH

backup

2019/7/1

Correlation matrix

vvH->bb 240GeV

Higgs width

• Absolute width measurement by 2 dominant channels:

$$\Gamma_H = \frac{\Gamma_{H \to ZZ}}{Br(H \to ZZ)} \propto \frac{\sigma(ZH)}{Br(H \to ZZ)}$$
 and $\Gamma_H = \frac{\Gamma_{H \to bb}}{Br(H \to bb)} \propto \frac{\sigma(\nu \nu H \to \nu \nu bb)}{Br(H \to WW)}$

- Since $\sigma(vvH) * Br(H \rightarrow bb): 0.79\%$
- But width correlated with all channels
 - $vvH \rightarrow vvbb$ and $ZH \rightarrow bb$ -45% -> would worse the result
- Combined fit in 10κ framework:

 $\Delta(\Gamma_H) \approx 0.8\%$

Synergy of HL-LHC

2019/7/1

• HL-LHC S2 estimation; has wonderful prediction on such channels like $\gamma\gamma$.

Kappa Synergy

Collider	HL-LHC	ILC_{250}	CLIC ₃₈₀	LEP3 ₂₄₀	$CEPC_{250}$	FCC-ee ₂₄₀₊₃₆₅		0+365
Lumi (ab^{-1})	3	2	1	3	5	5_{240}	$+1.5_{365}$	+ HL-LHC
Years	25	15	8	6	7	3	+4	
$\delta\Gamma_{ m H}/\Gamma_{ m H}$ (%)	SM	3.6	4.7	3.6	2.8	2.7	1.3	1.1
$\delta g_{\mathrm{HZZ}}/g_{\mathrm{HZZ}}$ (%)	1.5	0.3	0.60	0.32	0.25	0.2	0.17	0.16
$\delta g_{ m HWW}/g_{ m HWW}$ (%)	1.7	1.7	1.0	1.7	1.4	1.3	0.43	0.40
$\delta g_{ m Hbb}/g_{ m Hbb}$ (%)	3.7	1.7	2.1	1.8	1.3	1.3	0.61	0.56
$\delta g_{ m Hcc}/g_{ m Hcc}$ (%)	SM	2.3	4.4	2.3	2.2	1.7	1.21	1.18
$\delta g_{ m Hgg}/g_{ m Hgg}$ (%)	2.5	2.2	2.6	2.1	1.5	1.6	1.01	0.90
$\delta g_{\rm HTT}/g_{\rm HTT}$ (%)	1.9	1.9	3.1	1.9	1.5	1.4	0.74	0.67
<i>δg</i> _{нµµ} / <i>g</i> _{нµµ} (%)	4.3	14.1	n.a.	12	8.7	10.1	9.0	3.8
$\delta g_{\rm H}\gamma\gamma/g_{\rm H}\gamma\gamma$ (%)	1.8	6.4	n.a.	6.1	3.7	4.8	3.9	1.3
$\delta g_{ m Htt}/g_{ m Htt}$ (%)	3.4	-	-	-	-	-	-	3.1
BR _{EXO} (%)	SM	< 1.7	< 2.1	< 1.6	< 1.2	< 1.2	< 1.0	< 1.0