Ω_c^0 lifetime measurement

Dong Ao

Comparison before and after corrections to MC

Reweighting with GBReweighter

MC correction

- PIDCalib
- LOHadronTOS efficiency correction
- Reweighting with GBReweighter

Comparison of Xic0_PT

Comparison of Pp_PT

Comparison of Km_PT

Comparison of Pip_PT

Comparison of Pp_IPCHI2

Comparison of Km_IPCHI2

With(left) and without(right) LOHadronTOS efficiency correction

2019/7/19 Group meeting 9

Comparison of Pip_IPCHI2

Comparison of Xic0_FDCHI2

Comparison of Pp_PZ

Comparison of Km_PZ

Comparison of Pip_PZ

Comparison

- Seems
- LOHadronTOS efficiency correction
 - may cause PT disagreement
 - have very small effect on other variables

XicO_FDCHI2 and daughter IPCHI2 agree well in secondary samples

$Xic0 MC(\tau = 250 fs)$

- Decaytime distribution with and without LO calibration(left)
- Ratio between them (with LO/no LO)
- Can this effect be canceled by ratio between Ω_c^0 and Ξ_c^0 ?

LHCb-ANA-2016-068 March 7, 2017 Final version

Measurement of the decay-width difference between the B_s^0 and B^0

mesons and the D_s and D mesons

373 A binned least-squares fit is used to extract $\Delta(D)$, by minimizing

$$\chi^{2} = \sum_{i}^{\text{bins}} \frac{(n_{i} - R_{i}d_{i})^{2}}{\sigma_{n_{i}}^{2} + R_{i}^{2}\sigma_{d_{i}}^{2}},$$
(8)

where n_i (d_i) is the yield of the numerator (denominator) in time bin i, σ_{n_i} (σ_{d_i}) its uncertainty, and R_i is the expected ratio defined as

$$R_i = N A_i \frac{\int_{T_i} \operatorname{pdf}_n(t_D) dt_D}{\int_{T_i} \operatorname{pdf}_d(t_D) dt_D}.$$
(9)

For the bin i, T_i is the corresponding t_D interval, A_i is the ratio between the decay-time acceptances of the numerator over the denominator, $\operatorname{pdf}_{n(d)}$ is the pdf of the numerator (denominator), and N a normalisation factor. The integral over t is done numerically with 100 steps per decay-time bin. Each pdf is written as

$$\operatorname{pdf}_{j}(t) = e^{-\Gamma_{j}t_{D}} \otimes \mathcal{G}_{j}^{\operatorname{res}} \qquad (j = n, d),$$
 (10)

About tau fit

Expected ratio in bins

•
$$R_i = NA_i \frac{\int_{T_i} pdf_n(t)dt}{\int_{T_i} pdf_d(t)dt}$$

• Fit with step function or use self designed χ^2 like last page?

2019/7/19 Group meeting 18