Ω_c^0 lifetime measurement

Dong Ao

LHCb-ANA-2016-068 March 7, 2017 Final version

Measurement of the decay-width difference between the B_s^0 and B^0

mesons and the D_s and D mesons

373 A binned least-squares fit is used to extract $\Delta(D)$, by minimizing

$$\chi^{2} = \sum_{i}^{\text{bins}} \frac{(n_{i} - R_{i}d_{i})^{2}}{\sigma_{n_{i}}^{2} + R_{i}^{2}\sigma_{d_{i}}^{2}},$$
(8)

where n_i (d_i) is the yield of the numerator (denominator) in time bin i, σ_{n_i} (σ_{d_i}) its uncertainty, and R_i is the expected ratio defined as

$$R_i = N A_i \frac{\int_{T_i} \operatorname{pdf}_n(t_D) dt_D}{\int_{T_i} \operatorname{pdf}_d(t_D) dt_D}.$$
(9)

For the bin i, T_i is the corresponding t_D interval, A_i is the ratio between the decay-time acceptances of the numerator over the denominator, $\operatorname{pdf}_{n(d)}$ is the pdf of the numerator (denominator), and N a normalisation factor. The integral over t is done numerically with 100 steps per decay-time bin. Each pdf is written as

$$\operatorname{pdf}_{j}(t) = e^{-\Gamma_{j}t_{D}} \otimes \mathcal{G}_{j}^{\operatorname{res}} \qquad (j = n, d),$$
 (10)

Model

$$\chi^{2} = \sum_{i}^{bins} \frac{(n_{i} - R_{i}d_{i})^{2}}{\sigma_{n_{i}}^{2} + R_{i}^{2}\sigma_{d_{i}}^{2}}$$

• n_i (d_i) is the yield of the numerator (denominator) in time bin i, $\sigma_{n_i}^2(\sigma_{d_i}^2)$ is its uncertainty , R_i is the expected ratio

$$R_{i} = N \frac{\int_{T_{i}} pdf_{n}(t)dt}{\int_{T_{i}} pdf_{d}(t)dt}$$

• Here use simple pdf:

$$pdf(t) = e^{-\frac{t}{\tau}}$$

Fit use Xic0 data and Xic0(tau=250 fs) MC

Without L0 correction

•
$$\tau = 163.4 \pm 4.7 \, fs$$

•
$$\chi^2/ndf = 31.9/8$$

Fit use Xic0 data and Xic0(tau=250 fs) MC

With L0 correction

•
$$\tau = 173.9 \pm 5.4 \, fs$$

•
$$\chi^2/ndf = 35.3/8$$

2019/7/26 Group meeting

Effect of resolution

•
$$pdf(t) = e^{-\frac{t}{\tau}} \rightarrow pdf(t) = e^{-\frac{t}{\tau}} \otimes G(t; \mu = 0, \sigma)$$

- Fit with free σ ,converge at $\sigma = 287 fs$?
- Fix σ at different value

	Without resolution	$\sigma = 20 fs$	$\sigma = 50 fs$	$\sigma = 70 fs$	$\sigma = 100 fs$
Result τ/fs	163.4 ±4.7	163.4 ±4.7	163.3 ±4.7	162.7 ±4.7	160.9 ±4.8