

Institute of High Energy Physics Chinese Academy of Sciences

Physics motivation for Polarized beam collision

Zhijun Liang

Institute of High Energy Physics , Chinese Academy of Science

CEPC working day meeting

Introduction

- What is Polarized beam collision ?
 - Usually mean longitudinal polarized beam for physics

Туре	Polarized beam collision	Beam energy measurement
Polarized Type	Longitudinal polarized	Transverse polarized
Fraction of polarization	>30% (50%)	5~10% is enough

Туре	Longitudinal polarized e-	Longitudinal polarized e+	Transverse polarized Beam
CEPC	To be discussed	To be discussed	Yes (Z,WW)
Fcc-ee	No	NO	Yes (Z,WW)
ILC	yes	yes	-

Polarized beam collision: motivation

Polarized beam collision: motivation

Interference between individual amplitudes of γ and Z exchange $\mathcal{M}_{Z} = -\frac{\sqrt{2}G_{F}M_{Z}^{2}}{s - M_{Z}^{2}} \begin{bmatrix} \bar{\mathrm{f}}\gamma^{\rho} \left(c_{V}^{f} - c_{A}^{f}\gamma^{5}\right)\mathrm{f} \end{bmatrix} g_{\rho\sigma} \left[\bar{e}\gamma^{\sigma} \left(c_{V}^{e} - c_{A}^{e}\gamma^{5}\right)e \right] \qquad g_{L}^{f} = c_{V}^{f} + c_{A}^{f}$ $g_{R}^{f} = c_{V}^{f} - c_{A}^{f}$ $\mathcal{M}_{\gamma} = -\frac{e^{2}}{s} (\bar{\mathrm{f}}\gamma^{\nu}\mathrm{f})\mathrm{g}_{\mu\nu}(\bar{\mathrm{e}}\gamma^{\nu}\mathrm{e})$

Differential cross section:

 $\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4s} \left[A_0 (1 + \cos^2 \theta) + A_1 \cos \theta \right] \left\{ \begin{array}{c} \sim (1 + \cos^2 \theta) & \text{'Usual' Vector current, symmetric in } \cos \theta \\ & \sim \cos \theta & \text{Axial Vector current, asymmetric in } \cos \theta \end{array} \right.$

Weak interaction introduces forward backward asymmetry => Asymmetry is intrinsic to electroweak processes!!!

Motivation: LEP vs SLD

- Most precise single Individual determination of $\sin^2 \theta_{\rm eff}^\ell$ from SLC
 - Left-right asymmetry of leptons
- Most precise measurement of $\sin^2 \theta_{\rm eff.}^{\ell}$ from forward backward asymmetry A_{FB}^b in ee->bb at LEP

Two lessons:

- Most precise determininations of $\,\sin^2\!\theta^\ell_{\rm eff.}$ differ significantly
 - Cries for verification
 - Beam polarisation can match up for luminosity

Polarized beam collision analysis example

Full simulation study (with ILD concept), Benchmark reaction for 250 GeV running •Experimental challenge: Measurement of b-quark charge on event-by-event basis

 $\begin{array}{l} \text{Long lever arm in } \cos \theta_{\rm b} \text{ to extract from factors or couplings} \\ \\ \frac{d\sigma^{I}}{d\cos \theta} = S^{I}(1 + \cos^{2}\theta) + A^{I}\cos \theta \qquad I = L, R \quad \begin{array}{l} \text{Form factors/couplings} \\ \\ \text{from S and A} \end{array}$

CEPC EWK input to ECFA

	Γ_Z	$\sigma_{ m had}$		$A_e (\tau \text{ pol})$	$A_{\tau} (\tau \text{ pol})$
CEPC	$0.5\mathrm{MeV}$	$0.005\mathrm{nb}$		0.0003	0.0005
FCC-ee	$0.1\mathrm{MeV}$	$0.005\mathrm{nb}$		_	_
	R_e	R_{μ}	R_{τ}	R_b	R_c
CEPC	0.0003	0.0001	0.0002	0.0002	0.001
FCC-ee	0.0003	0.00005	0.0001	0.0003	0.0015
	$A_{\mathrm{FB}}^{0,e}$	$A^{0,\mu}_{ m FB}$	$A_{ m FB}^{0, au}$	$A_{ m FB}^{0,b}$	$A^{0,c}_{ m FB}$
CEPC	0.005	0.003	0.005	0.001	0.003
FCC-ee	_	_	_	_	_
(fitted)	A_e	A_{μ}	$A_{ au}$	A_b	A_c
CEPC	0.0003	0.003	0.0005	0.001	0.003
FCC-ee	0.0001	0.00015	0.0003	0.003	0.008

Table 1: A comparison of CEPC and FCC-ee Z-pole inputs. All uncertainties are relative (normalized to 1) except for Γ_Z and σ_{had} . " τ pol" denotes that the measurement is from τ polarization in $Z \to \tau^+ \tau^-$. The 5 fitted asymmetry observables $(A_{e,\mu,\tau,b,c})$ are derived from a simutanous fit of all the A_{FB}^{0} observables as well as the A_e and A_{τ} from τ polarization.

Impact of Polarized beam collision

- A_e is obtained from Z->ττ
 - Fcc-ee expected precision : 0.0001
 - CEPC expected precision : 0.0003
 - CEPC expected precision (with polarized beam) : 0.0001
 - limited by statistics , a factor of 2~3 worse than Fcc
 - By using polarized beam collision, A_e precision can improve by 3
- A_µ
 - Fcc-ee expected precision : 0.00015
 - CEPC expected precision : 0.003
 - CEPC expected precision (with polarized beam) : 0.0003
 - By using polarized beam collision, A_e precision can improve by 10

Summary

- Polarized beam collision can enrich our physics program for new physics search.
 - Especially to some SUSY model
- Improve precision for weak mixing angle measurement
 - Expect to improve A_e by a factor of 3
 - Expect to improve A_{μ} by a factor of 10