Status and progress of TPC small prototype

Huirong Qi 2019.06.28

Brief introduction

TPC limitations

- Ions back flow in chamber
- Calibration and alignment
- Low power consumption FEE
 ASIC chip

ALICE TPC	CEPC TPC
>50kHz@pp	w.o BG?
No Gating	No Gating
No trigger	Trigger?
Build-in	Build-in
<10	<5
Laser	NEED
	ALICE TPC >50kHz@pp No Gating No trigger Build-in <10 Laser

Overview of TPC detector concept

Compare with ALICE TPC and CEPC TPC

Why need the laser? @Example result from ALICE TPC

- The drift velocity is measured with precision ²⁵⁰ via the signal produced ²⁰⁰ by stray laser light on the aluminised central electrode (by 100 photoelectric effect)
- The drift time gradient due to the pressure gradient is observed

- 3 -

Status of our prototype

TPC small prototype with the laser tracks

Progress on the prototype

- □ All part of the prototype
 - Drift chamber (Done)
 - Field cage design and assembled (Done)
 - □ High voltage power crate (Done)
 - **GEM detector test (Done)**
 - **Readout PCB board (Done)**
 - HV training of resistance chain (Done)
 - Gas pre-test (Still testing)

Assembled Field cage

Detector

Drift chamber

Field cage

Readout PCB board

Electronics from Tsinghua

- Amplifier (Testing and not ready)
 - CASAGEM ASIC chip
 - □ 16Chs/chip
 - 4chips/Board
 - Gain: 20mV/fC
 - □ Shape time: 20ns
 - **10bits for SCA**
 - □ Up to 1080 channels
- **DAQ (Testing and not ready)**
 - **• FPGA+ADC**
 - 4 module/mother board
 - 64Chs/module
 - Sample: 40MHz
 - **Up to 1080 channels**

FEE electronics and DAQ

Summarized of the prototype

Parameters list

	Items	Design	Test parameters
Laser System	Pointing stability	< 10µm	X@ 3.08μm Y@1.87 μm
	Track point accuracy	< 5'	< 3'
	Energy dynamic range	< 30%	<3.84%
	Duration time of cal.	< 5mins	90s
TPC Chamber			
High voltage power supply		Assembled	
Support platform		& K eady	
FEE electronics and DAQ		128 channels ready & Testing more channels (-2 weeks)	

Performance study of a prototype with 128 Channels readout

Experimental setup using a laser

Cathode

New setup detector testing

Setup and photo of the detector module

Test with UV laser

- Readout board, 128 Channels electronics, DAQ and laser mirror and PCB board have been done and assembled
- TPC barrel mount and re-mount with the Auxiliary brackets
- TPC preliminarily tested with 55Fe and the different power laser beam
- Optimization of the laser studied

The charge distribution using a laser

Charge distribution

Pad response

Row_3

- **Problem:** 3 rows readout electronics can not work well
- □ All confirmed and fix

Preliminary results of Laser tracker energy spectrum and tracker

Future plan

- All parts of the small prototype will be assembled with more than 1000 channels readout.
- Measurement of the IBF suppression as a function of the optimized ΔV applied to the hybrid detector.
- Comparison of the measured the x/y resolution and dE/dx resolution with the laser tracks and the electron beam tracks.

••••

Thank you for your attention !