## **CEPC Tau Analysis**

2019/07/02 CEPC Workshop

### Content

- The CEPC H->tautau signal strength analysis
  - Package
  - Combined accuracy
- CEPC tau decay mode analysis
  - Dependencies
  - Current status

#### Taurus

• A dedicate tau reconstruction package





# Signal Strength Analysis

- For events without jets
- For event with jets

|            | $\delta(\sigma \times BR)/(\sigma \times BR)$ |
|------------|-----------------------------------------------|
| $\mu\mu H$ | 2.8%                                          |
| eeH        | 5.1%                                          |
| vvH        | 7.9%                                          |
| qqH        | 0.9%                                          |
| combined   | 0.8%                                          |

# Dependence on BMR

BMR: boson mass resolution



#### Next

- Taurus in other ZH channels
- Measurement of polarization
  - decay modes identification
    - event selection, non-τ background
    - photon detection efficiency, bremsstrahlung and radiative photons
    - particle identification, converted photons, photon identification, fake photons, π0 reconstruction, tracking of charged particles

# Detector & Physics Dependency

#### photon detection efficiency

- Detector acceptance
  - Angle distribution: <0.98
  - Energy distribution: >0.5GeV
  - efficiency: 81.21%



#### bremsstrahlung and radiative photons

• FSR rate



# Reconstruction Dependency

## particle identification

- Tracks in Tau are isolated
- Performance comparable to single particle



## photon identification

| <ul> <li>eff vs mis-id rate</li> </ul>                                | <1GeV               | 1-5GeV | >5GeV |       |
|-----------------------------------------------------------------------|---------------------|--------|-------|-------|
| <ul> <li>No neutron mis-id</li> <li>Probability for tracks</li> </ul> | Photon              | 99.37  | 99.34 | 99.85 |
| <ul> <li>a.00 26%</li> </ul>                                          | EM<br>Fragments     | 39.53  | 45.08 | 33.44 |
| • mu:88.66%                                                           | Hadron<br>Fragments | 0      | 0.04  | 3.71  |
| • pi: 65.11%                                                          | Neutron             | 0      | 0.02  | 4.7   |

# fake photons

- Fluctuations of a shower can generate "fake photons" which are artefacts of the clustering algorithm or true photons produced by secondary interactions in the ECAL.
- Time
- distance to the closest charged track



# fake photons

- Fluctuations of a shower can generate "fake photons" which are artefacts of the clustering algorithm or true photons produced by secondary interactions in the ECAL.
- Time



## π0 reconstruction

- No dedicate π0 reconstruction yet Efficiency of well reconstructed photon pair
- photon distance (>10mm~Theta>0.008)
  - photons well reconstructed: 90%
- photon energy resolution





# tracking of charged particles

Tracking efficiency in CDR (Generally 97% for Z pole to tau events)



#### Others

 event selection, non-τ background, converted photons, π0 Dalitz decays, secondary nuclear interactions dynamics in the Monte Carlo generator.

## **Estimate Migration Matrix**

- 1 prong without photon: Eff\_trk \* (1-Prob\_frag\*MisPh)
  - Tracking efficiency, Probability of having fragments, MisID rate of fragments to photon
- 1 prong with two photon: Eff\_trk \* (Eff\_ph<sup>2</sup> \* (1-Prob\_frag\*MisPh)<sup>2</sup> +Eff\_ph\*(1-Eff\_ph)\*(1-Prob\_frag\*MisPh))
- .
- ISR/FSR, photon conversion not included

## **Estimate Migration Matrix**



# **Current Migration Matrix**

|                     | No Trk | 1-<br>prong(l) | 1-<br>prong(h) | 1prong +<br>1photon | 1prong +<br>2photon | 1prong +<br>3photon | 1prong +<br>4photon | 1prong +<br>5photon | 3prong | 3prong +<br>2photon |
|---------------------|--------|----------------|----------------|---------------------|---------------------|---------------------|---------------------|---------------------|--------|---------------------|
| 1-<br>prong(l)      | 3.58   | 89.42          | 3.17           | 0.07                | 0                   | 0                   | 0                   | 0                   | 0.35   | 0                   |
| 1-<br>prong(h)      | 5.90   | 5.76           | 78.17          | 4.49                | 0.72                | 0.16                | 0.05                | 0                   | 1.15   | 0                   |
| 1prong +<br>2photon | 2.47   | 1.43           | 0.80           | 26.56               | 54.48               | 2.97                | 0.19                | 0.01                | 0.04   | 1.59                |
| 1prong +<br>4photon | 1.93   | 1.38           | 0.07           | 1.39                | 8.45                | 28.61               | 42.03               | 3.04                | 0      | 0.19                |
| 3prong              | 1.34   | 2.13           | 0.19           | 0.11                | 0.04                | 0                   | 0                   | 0                   | 88.47  | 0.24                |
| 3prong +<br>2photon | 1.12   | 1.81           | 0.08           | 0.06                | 0.23                | 0.08                | 0.02                | 0.01                | 1.08   | 63.94               |