A Gentle Introduction to modern Spinor Heliaty Amplitudes

$$
A(--++)=\frac{\langle 12\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 41\rangle}
$$

Kirtimaan Mohan
\qquad
\qquad
\qquad

References: There are many good references for this topic
Massless spinor helicity:
1.) A brief introduction to modern amplitude methods - Lance Dixon (TAs1 2013)
2) Constructing Scattering amplitudes - Ruth Brillo
3.) Scattering Amplitudes - Henriette Elvang, Yu-tin Huang (a riv: 1308.1697)
4.) TAS1 lectures on scattering Amplitudes - Clifford Cheung (ar Xiv: 1708.03872)

Massive Spinor helicity:
1.) Scattering Amplitudes for all masses and Spins - N. Arkani-Hamed, TC Huang YT Huang

$$
\text { arxiv } 1709.04891
$$

There are many more references, I have only listed the ones that I think are pedagogically good.

What I hope to cover in these lectures:

1) Introduction to spinors
2) Massless spinor helicity formalism:
a) Traditional spinor helicity methods
b.) Modern Approach (Amplitude Bootstrap)
3. Massive spinor heliuity methods:
4.) Loop Amplitudes:

Hopehilly, by the end of these lectures you should have a broad Overview of the subject as well as a foundation to build on further.

Motivation + Few Introductory remarks

Motivation:-
Traditional Techniques developed because

- To glean information about spin

S-Diracalgebra too complicated in some cases
Simplify $\{$ - Include spin information in de cays of particles
Calculation - Unitarity calculations require helicity amplitudes \triangle Partial curve analysis.

Modern Techniques:

- Simplification of Calculations
- Understand the Structure of a theory by observing hour its amplitudes behave.
- "Lagrangian-less" formalism?
\rightarrow We are not there yet.
- Cumberse machinery of QFT makes understanding some results difficult
- This provides an alternate path to understanding-simpler.

$$
\begin{array}{rlrl}
g+g & \rightarrow g+g & 4 \text { diagrams } & g+g \rightarrow 8 g>10^{6} \text { diagrams. } \\
g+g \longrightarrow g+g+g \quad 25 \text { diagrams } & & \\
g+g & \longrightarrow g+g+g+g & 220 \text { diagrams } & \\
& & A\left(1 \pm, \ldots n^{+}\right)=0
\end{array}
$$

Compare with Dewitt' calculation of graviton scattering as another example:
Quantum Theory of Gravity. III. Applications of the Covariant Theory
https://journals.aps.org/pr/abstract/10.1103/ PhysRev.162.1239
Bryce S. DeWitt
Phys. Rev. 162, 1239 - Published 25 October 1967
graviton'- graviton scattering

(11 terms) group as symmetric
combinations

O(2500) terms in vertex
28 terms if you group as symmetric combinations.

- In spite of the complexity of the vertices and propagotons:
$A\left(1^{--}, 2^{++}, 3^{--}, 4^{++}\right)=\frac{\langle 13\rangle^{4}[24\}^{4}}{s t a} \rightarrow$ Simple form of ampliunde.
- The Spinor Helicity method : \rightarrow represent all objects with Spinors and perform Explicit calculations with it.
- Why is this advantageous?
- Short anscuer:- No redundant degrees of freedom (aka gauge freedom)
- For Example Photons have 2 d.o.I. however they are represented by Four Vectors
- Additional constraints needed to remove additional d. af.
-Quantization also complicated - Eupta-Bleuler formalism.
- On the other hand Photons have a representation in terms of spinors with no redundant d of.
- The Lagrangian formalism introduces redundant degree of freedom, \Rightarrow cumbersome calculations

Fields are integration variable for action S and
S can be invariant under field redefinitions

$$
\begin{aligned}
& A_{\mu} \rightarrow A_{\mu}+\partial_{\mu} \theta \rightarrow G_{\text {gauge invari }} \\
& h_{\mu \nu} \rightarrow h_{\mu \nu}+\partial_{\mu} \theta_{\nu}+\partial_{\nu} \theta_{\mu} \text { - Ditteomorthism } \begin{array}{c}
\text { invariance }
\end{array}
\end{aligned}
$$

Spinors.

The Lorentz Group:
SO $(3,1)$

- Let us recall hon $S O(3,1)$ is isomorphic to $S \angle(2, C)$
$S L(2, \mathbb{C})$: Group of 2×2 matrices withe $\operatorname{Det}(M)=1$
$S L(2, \mathbb{C}):$ Can also be thought of as the complexitied direct product of $\operatorname{su}(2) \otimes \operatorname{su}(2)$
- Lorentz group leaves $x_{\mu} x^{\mu}=g_{\mu \nu} x^{\mu} x^{\nu}=t^{2}-x^{2}-y^{2}-z^{2}$ invariant.
- Transformations that leave the inner product invariant are
a.) rotations $(S O(3)): x^{2}+y^{2}=$ const
b) Boosts: $t^{2}-z^{2}=$ const

A lie group is a group whose elements depend on a set of parameters θ^{a} in a continuous and differentiable may.
Lorentz transformation $\Lambda=e^{-\frac{i}{2} \text { dew } J^{\mu \nu}}=e^{-\frac{i}{2} \vec{\theta} \cdot \vec{J}-\vec{\eta} \cdot \vec{k}}$

$$
J^{i}=\frac{1}{2} \epsilon^{i j k} J^{j k}, K^{i}=J^{i o}
$$

(Rotations)
(Rotations) (Boosts).
For spinors we will consider one particular representation $J^{i}=\sigma / 2$; where $\sigma=$ Pauli matrices.

Algebra:

$$
\left[J_{a}, J_{b}\right)=i \epsilon_{a b c} J_{c},\left[J_{a}, K_{b}\right]=i \epsilon_{a b c} K_{c}, \quad\left[K_{a}, K_{b}\right]=-i \epsilon_{a b c} K_{c}
$$

Let $J_{a} \pm=J_{a} \pm i K_{a}$; Then algebra in new basis

$$
\left[J_{a}^{+}, J_{b}^{+}\right]=i \epsilon_{a b c} J_{c}^{+},\left[J_{a}^{+}, J_{b}^{-}\right]=0 \quad,\left[J_{a}^{-}, J_{b}^{-}\right]=i \epsilon_{a b c} J_{c}
$$

- Algebra so $(3,1)$ is isomorphic to complexified su(2) © su(2)
- Hence representations of $S O(3,1)$ can be labelled by casimirs of $\operatorname{su}(2)$, ie. $1 / 2$ integers $\left(j^{-}, j^{+}\right)$

$$
\left(j^{-}, j^{+}\right)
$$

$(0,0)$: Lorentz Scalar
$(1 / 2)$: Ψ_{L} (Reft handed spinor); dimension of rep. $=2 j+1=2\left\{\begin{array}{l}\text { We are going } \\ \text { to focus on } \\ \text { these }\end{array}\right.$
$(0,1 / 2): \varphi_{R}$ (Right handed spinor): dimension of rep $=2 j+1=2 \int$ these.
$(1 / 2,1 / 2)$: Lorentz Scalar $(+$ Lorentz vector

$$
\begin{aligned}
& \Psi_{L}: \vec{J}^{+}=0, \vec{J}^{-}=\vec{\sigma} / 2 \quad(2 \times 2) \text { matrices } \\
& \vec{J}=\vec{J}^{+}+\vec{J}^{-}=\frac{\vec{\sigma}}{2}
\end{aligned}
$$

$\vec{K}=-\left(\vec{J}^{+}-\vec{J}^{-}\right)=\frac{i \vec{\sigma}}{2} \rightarrow$ Not hermitian (Non compact group (Non compact group

- No finite dimensional unitary wi.)
$\left.\begin{array}{l}\left.\Psi_{L} \rightarrow \Lambda_{L} \Psi_{L}=\exp \left\{\left(-i \vec{\theta}-\overrightarrow{\eta_{L}}\right) \frac{\vec{\sigma}}{2}\right\} \Psi_{L}\right\} \text { Notice signs on y parallel and antiparallel } \\ \Psi_{R} \rightarrow \Lambda_{R} \Psi_{R}=\exp \left\{(-i \vec{\theta}+\vec{\eta}) \cdot \frac{\vec{\sigma}}{2}\right\} \Psi_{R}\end{array}\right\}$ to boost direction.

J: SO(3) transformations We will be us on Weyl Spinose
K : Boosts
$(0,0):$ Scalar
$(1 / 2,0): \Psi_{L}$ (left haraded spinor): Dimension of repreection $\alpha_{j+1}=2 d$
$(0,1 / 2): \Psi_{R}$ (Right handed spinor): $2 j H=2$
$\therefore\left(\Psi_{L}\right)_{\alpha} \quad\left(U_{R}\right)_{\dot{\alpha}}$: Dot stresses that the index belongs to a different representation.
Representation of

$$
\begin{aligned}
& \Psi_{L}: \vec{J}^{+}=0, \vec{J}^{-}=\vec{\sigma} / 2 \quad(2 \times 2) \text { matrices } \\
& \vec{J}=\vec{J}^{+}+\vec{J}^{-}=\frac{\vec{\sigma}}{2}
\end{aligned}
$$

$$
\vec{K}=-\left(\vec{J}^{+}-\vec{J}^{-}\right)=\frac{i \overrightarrow{\vec{\sigma}}}{2} \rightarrow \text { Not hermitian (Non compact group }
$$

(Non compact group
$\left.\psi_{L} \rightarrow \Lambda_{L} \psi_{L}=\exp \left\{(-i \vec{\theta}-\vec{\eta}) \frac{\vec{\sigma}}{2}\right\} \Psi_{L}\right\}$ Notice signs on η parallel and ant parallel
$\Psi_{R} \rightarrow \Lambda_{R} \Psi_{R}=\exp \left\{(-i \vec{\theta}+\vec{\eta}) \cdot \frac{\vec{\sigma}}{2}\right\} \Psi_{R} \int$ to boost direction.

Notation: (doted \& undotted)

- Spinors can be fields or numbers
- ie real, complex or grassmam numbers
- For our purpose it is enough to take them to be complex.
- Using the dotted and undotted notation can be messy so we make our notations simpler.

Notation V2: (BRA KET)

$$
\begin{array}{l|c|c|c}
\left.\lambda^{\alpha}=p\right\rangle, & \lambda_{\alpha}=\langle p & \left.\tilde{\lambda}_{\dot{\alpha}}=p\right] & , \tilde{\lambda}^{\dot{\alpha}}=[p \\
\equiv \frac{1+\gamma_{s}}{2} u(p) & \equiv \bar{u}(p) \frac{1+\gamma_{s}}{2} & \equiv \frac{1-\gamma_{s}}{2} u(p) & \equiv \bar{u}(\beta) \frac{\left(1-\sigma_{S}\right)}{2} \\
p \text { here? }
\end{array}
$$

Q: What is p here?
$\lambda^{\alpha} \tilde{\lambda}^{\dot{\alpha}}=p^{\alpha \dot{\alpha}}$ is equivalent to a Lorentz vector, and is a direct product of two spinors (bi-spinor).
$-p^{\alpha \dot{\alpha}}$ transforms under $\Lambda_{L} \otimes \Lambda_{l} \longrightarrow \operatorname{su}(2) \otimes \operatorname{su}(2) \Rightarrow \operatorname{SL}(2, \mathbb{c})$
Let us curite down explicitly a representation for $\phi^{\alpha \dot{\alpha}}$.

$$
\begin{aligned}
& p^{\mu}=\left(p_{0}, \vec{\phi}\right) \quad \sigma^{\mu}=(i, \vec{\sigma}) \quad \text { Writing } p^{\mu} \text { in } \operatorname{SL}(2, \mathbb{C}) \text { rep } \\
& p^{\mu} \sigma_{\mu}=\left(\begin{array}{cc}
p_{0}+p_{3} & p_{1}-i \phi_{2} \\
p_{1}+\bar{p}_{2} & p_{0}-p_{3}
\end{array}\right) \rightarrow\left(\begin{array}{l}
1,-\vec{\sigma})
\end{array} \sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right. \\
& \left(p^{\mu} \sigma_{\mu}\right)_{\alpha \dot{\alpha}}=p_{\alpha \dot{\alpha}}=\left(\begin{array}{c}
1
\end{array}\right)
\end{aligned}
$$

- we cuant λs to be solutions of the dirac equation

$$
\begin{aligned}
& \not \phi \psi=0 \quad \text { or in } \\
& p^{\alpha \dot{\alpha}} \tilde{\partial}_{\dot{\alpha}}=0 \quad p^{\alpha \dot{\alpha}} \lambda_{\alpha}=0
\end{aligned}
$$

$S L(2, C)$

$$
p_{\alpha \dot{\alpha}}=\mathbb{P} \text { then } \mathbb{L}^{+} \mathbb{P} \mathbb{L}
$$

$L \rightarrow$ unitary \rightarrow rotation

$$
L=\left(\begin{array}{cc}
e^{\eta} & 0 \\
0 & e^{-\eta}
\end{array}\right) \rightarrow \text { Boosts }
$$

non-compact
$\because \operatorname{det} L=1$ deft \mathbb{P} is lorentz invariant.

- We will only pe concerned with massless sponors and therefore mass less momenta.

$$
\therefore \operatorname{det} \mathbb{P}=0
$$

- Linear algebra: 2×2 matrix with get 0 can be written as a product of two vectors.

$$
\text { let } \begin{aligned}
\lambda_{\alpha} & =\binom{a}{a_{2}} \quad \tilde{\lambda}_{\dot{\alpha}}=\left(b_{1} b_{2}\right) \\
b_{\alpha \dot{\alpha}} & =\operatorname{det}\left(\lambda_{\alpha} \tilde{\lambda}_{\dot{\alpha}}\right)=\left(\begin{array}{ll}
a_{1} b_{1} & a_{1} b_{2} \\
a_{2} b_{1} & a_{2} b_{2}
\end{array}\right)=a_{1} b_{1} a_{2} b-a_{1} b_{2} a_{2} b_{1}=0
\end{aligned}
$$

Explicit decomposition of λ :

$$
\lambda^{\alpha}=\frac{z}{\sqrt{p^{0}-p^{3}}}\binom{p_{0}-p_{3}}{-p_{1}-i p_{2}} \quad \lambda^{\dot{\alpha}}=\frac{z^{-1}}{\sqrt{p^{0}-p^{3}}}\left(p^{0}-p^{3},-p^{1}+i p^{2}\right)
$$

$$
p_{0} \equiv \sqrt{p_{1}^{2}+p_{2}^{2}+p_{3}^{2}}
$$

$Z=e^{i \phi}$. pure phase for real momenta.
(phase of the little group)
Important we will come bade to this.
For complex momentum: $\lambda^{\alpha} \neq\left(\tilde{\lambda}^{\alpha}\right)^{+}$;

$$
\text { Lorentz Invariants: } \quad \beta^{\alpha \dot{x}}=\lambda^{\alpha^{\sim}} \dot{\lambda}^{\dot{\alpha}} \quad q^{\alpha \dot{x}}=x^{\alpha} \tilde{x}^{\dot{\alpha}}
$$

$$
\begin{aligned}
& p \cdot q=\frac{1}{4} g_{\mu \nu} \sigma_{\alpha \dot{\alpha}}^{\mu} \sigma_{\beta \beta}^{v} \lambda^{\alpha} \tilde{\lambda}^{\dot{\alpha}} \chi^{\alpha} \tilde{x}^{\dot{\alpha}}=\frac{1}{2} \epsilon_{\alpha \beta} \epsilon_{\dot{\alpha \beta}} \lambda^{\alpha} \tilde{\lambda}^{\dot{\alpha}} x^{\beta} \tilde{x}^{\dot{\beta}}=\frac{1}{2}\langle\lambda x\rangle[x \lambda] \\
& \left.p^{\alpha \dot{\alpha}}=p\right\rangle\left[p \quad p_{\dot{\alpha} \alpha}=p\right]\left\langle p \quad\langle\lambda x\rangle=\sqrt{2 p \cdot q} e^{i \phi} \quad=\frac{1}{2}\langle q \beta\rangle[q \beta]\right. \\
& {[x \lambda]=\sqrt{2 p \cdot q} e^{-i \phi}}
\end{aligned}
$$

Notation:

$$
p^{\mu}=\left(p_{0}, \vec{p}\right) \quad\left(p^{\mu} \sigma^{\mu}\right)_{\alpha \dot{\alpha}}=\left(\begin{array}{ll}
p_{0}+p_{3} & p_{p}-i p_{2} \\
p_{1}+i p_{2} & p_{0}-p_{3}
\end{array}\right)
$$

This transforms as
$F Y 1$: in this $r e p$ is allay y so no need of p notation $\mathbb{P} \mathbb{L}^{+}$; Note $\mathbb{L}^{\operatorname{L}} \rightarrow \operatorname{det} \mathbb{L}=1 \therefore \mathbb{L}$ is a representation of $S L(2, \mathbb{C})$
\mathbb{L} : Lorentz transformation.
$\operatorname{det} P=p^{0}-p_{3}^{2}-p_{1}^{2}-p_{2}^{2}=m / 2^{0} \quad \begin{aligned} & \text { (We well only be talking about mashes } \\ & \text { momenta) }\end{aligned}$
For a 2×2 matrix with set $=0$ we can decompose it as an outer product of two vectors
Proof:

$$
\text { roof: } \lambda=\left(\begin{array}{ll}
a_{1} & b_{1}
\end{array}\right) \quad x=\left(\begin{array}{ll}
a_{2} & b_{2}
\end{array}\right) .
$$

$$
\therefore p_{\alpha \dot{\alpha}}=\lambda_{\alpha} \tilde{\lambda}_{\dot{\alpha}} ; \lambda_{\alpha}=\frac{e^{i \theta}}{\sqrt{p_{0}-p_{3}}}\binom{p_{1}-i p_{2}}{p_{0}-p_{3}} \quad \tilde{\lambda}_{\dot{\alpha}}=\frac{e^{-i \theta}}{\sqrt{p_{0}-p_{3}}}\left(p_{1}+i p_{2}, p_{0}-p_{3}\right)
$$

\rightarrow Check that this gives you $\phi_{\alpha_{\alpha}} \quad p_{0}=\sqrt{p_{1}^{2}+p_{2}^{2}+p_{3}^{2}}$
$e^{i \theta} \rightarrow$ phase (related to little group phase);
for real valued momentum $\lambda_{\alpha}=\left(\bar{\lambda}_{\alpha}\right)^{+}$; This is not true for complex moment.

Imp: You may use Weyl or Dirac spinous easily in $|P\rangle\langle\dot{\text { notation. }}$ notation. This ans alternate scheme.

Relation to dirac spinor

$$
\psi=\binom{\psi_{L}^{\alpha}}{\psi_{R, j}} \quad \bar{\psi}=\left(\begin{array}{ll}
\bar{\psi}_{L \alpha} & \bar{\psi}_{R}^{\dot{\beta}}
\end{array}\right) \text {; Simplify notation remove - and } L, R \text {, }
$$

Inner product :

$$
\begin{aligned}
& \left.\epsilon^{\alpha \beta} \lambda_{\alpha} x_{\beta}=\langle\lambda x\rangle=-\langle x \lambda\rangle \rightarrow \text { anticymmety }\right] \\
& \epsilon^{\dot{\alpha} \beta} \tilde{\lambda}_{\dot{\alpha}} \tilde{x}_{\dot{\beta}}=[\tilde{\mu} \tilde{\lambda}]=-[\tilde{\lambda} \tilde{\mu}] \\
& \leftrightarrows \Rightarrow \lambda\rangle=0 \text { or }[\lambda \lambda]=0 \text { (inner product } 0 \text { if II) }
\end{aligned}
$$

Note: For calculations, one does not need dotted and undotled notation in most cases,

- Nice ts make connection with there
- Also for some complicated situations may be ethel.

$$
\begin{aligned}
& \langle\lambda x\rangle=\sqrt{2 p \cdot q} e^{i \phi} \quad[x \lambda]=\sqrt{2 p \cdot q} e^{-i \phi} \\
& \langle\lambda x\rangle[x \lambda]=2 p \cdot q \\
& \left.\langle\lambda x]=0=[x \lambda\rangle \quad p_{\alpha \dot{\alpha}}=\lambda_{\alpha} \tilde{j}_{\dot{\alpha}}=\beta\right\rangle[p
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\text { Schowen identity }}{\mid 0=\langle i j\rangle\langle k l\rangle+\langle i k\rangle\left\langle l_{j}\right\rangle+\langle i l\rangle\langle j k\rangle} \begin{array}{l}
\quad \begin{array}{c}
\text { chic in } j k l
\end{array} \\
\sum_{j} \sum_{i, j}\left\langle p_{i}=0\right.
\end{array}
\end{aligned}
$$

Example $1 e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$(All outgoing momentai)

$$
M^{2}=4 e^{4} \overbrace{\langle 13\rangle[31]}^{s} \overbrace{[24]\langle 42\rangle}^{t} \quad g^{\mu \nu} \sigma_{\mu}^{\alpha \dot{\alpha}} \sigma_{v}^{\beta \dot{\beta}}=2 \varepsilon^{\alpha \beta} \varepsilon^{\alpha \beta}
$$

$$
=\frac{4 e^{4}}{s^{2}} t^{2}
$$

- Dirac algebra look simpler
- But nothing nee other than notation

$$
M_{\text {tot }}^{2}=\frac{4 e^{4}}{s^{2}}\left(t^{2}+u^{2}\right)
$$

- We have used Fierz transformations.

$$
\begin{aligned}
& \left.\left.i M\left(1^{-} 2^{+} 3^{-} 4^{+}\right)={ }_{2} \chi^{1} \psi_{3}=\left(-i e^{2}\right)<1 \gamma^{\mu} 2\right] \frac{-i g \mu \nu}{s}<3 \gamma_{v} 4\right] \\
& \begin{array}{lc}
l_{\alpha} \sigma^{\mu \alpha \dot{\alpha}} 2_{\dot{\alpha}} & 3_{\beta} \sigma_{v}^{\alpha \beta} u_{i} \\
3)^{24}[24 & \text { use }
\end{array} \quad\left[k_{1} \gamma^{\mu} l_{2}\right]=0 \\
& =2 i e^{2}\langle 13\rangle[24] \quad \text { use } \\
& \begin{array}{cc}
l_{\alpha} \sigma^{\mu \alpha \dot{\alpha}} 2_{\dot{\alpha}} & 3_{\beta} \sigma_{\nu}^{\alpha \beta} \varphi_{\beta} \\
\text { 3) }[24] & \text { use }
\end{array} \quad\left[k_{1} \gamma^{\mu} l_{2}\right]=0
\end{aligned}
$$

