

Anomalous charged charmoniumlike states observed in process $e^+e^- \rightarrow \pi^+\pi^-\psi(3686)$

Xuhong Li¹, Xiaorong Zhou¹, Peilian Li¹, Zentian Sun², Haiping Peng¹

(1) University of Science and Technology of China

(2) IHEP

https://docbes3.ihep.ac.cn/DocDB/0007/000722/004/Pi0Pi0Jpsi_memo_v1.6.pdf

- For process $e^+e^- \rightarrow \pi^0 \pi^0 J/\psi(or \pi^+\pi^- J/\psi)$, clear Zc(3900) state can be observed in $M(\pi J/\psi)$ spectra
- The reflection of Zc(3900) can be seperated easily
- For different energy points under Y(4220) state, $M(\pi J/\psi)$ distributions are similar

https://docbes3.ihep.ac.cn/DocDB/0007/000722/004/Pi0Pi0Jpsi_memo_v1.6.pdf

- > For high energy points, $M(\pi^0 J/\psi)$ spectra are hard to understand
- The "reflection" is too narrow to undrstand
- It's hard to distinguish signal from the reflection (Zc(3900) or Zc(4020)?)

PHYSICAL REVIEW D 96, 032004 (2017)

- ► BESIII also observed charged charmonium-like structures in $M(\pi^{\pm}\psi(3686))$ spectra through process $e^+e^- \rightarrow \pi^+\pi^-\psi(3686)$
- Two peaks are observed but hard to distinguish the signal from its reflection (Zc(3900) or Zc(4020)?)

- > The structures observed are different for low energy points and high energy points
- There are still unresolved discrepancies between the simple BW fit model and data
- Further analysis is necessary to study the intermediate structures

Data Set and Event Selection

• Data Set:

- Signal channel: $e^+e^- \rightarrow \pi^+\pi^-\psi(3686)$
- Boss version: 703 + 704
- Data: old XYZ data + new XYZ data
- Event Selection:
 - ➤ Charged channel: $ψ(3686) → π^+π^-J/ψ$
 - ► Neutral channel: $\psi(3686) \rightarrow neutrals + J/\psi$ (Details can be found in my collaboration meeting report) https://indico.ihep.ac.cn/event/8797/session/18/contribution/72/material/slides/0.pdf
- Signal: $M(\psi(3686)) \in [3.68, 3.692] \text{ GeV}$
- Side band: $M(\psi(3686)) \in [3.666, 3.678] \&\& [3.694, 3.706] GeV$

Small phase space may limit the production of possible charged charmonium-like states

Clear structures can be observed

> $M(\pi^{\pm}\psi(3686))$ spectrum at 4380 is similar to distribution at 4360

→ 4290,4340,4380,4400 are from preliminarily reconstructed data sets → $M(\pi^{\pm}\psi(3686))$ spectrum at 4400 is similar to distribution at 4420

- Two clear peaks are observed for energy points 4230~4290
- > The first peak is stable at ~3.9 GeV in $M(\pi^{\pm}\psi(3686))$ spectra
- The second peak varies with different energy, looks like a reflection
- This charged charmonium-like state is Zc(3900) decaying from Y(4220) instead of Zc(4020)

- Large difference in $M(\pi^{\pm}\psi(3686))$ spectra is observed for energy points under Y(4390) region
- Zc(3900) can be observed both in low and high energy a region
- → $\sqrt{s} \le 4.38$ GeV, no obvious Zc(4020) is observed
- \blacktriangleright $\sqrt{s} \ge 4.40$ GeV, very clear Zc(4020) is observed

> Assumption:

Another very narrow states under 4.4~4.5 GeV region ? Say $e^+e^- \rightarrow ? \rightarrow \pi^{\pm}Z_c^{\mp}$ (4020) (waiting for data 4.44 GeV)

MC with Zc(4020) is generated with mass of 4.025 GeV and width of 0.025 GeV, scaling with same ratio of 4420 point

Amplitude analysis

• To study the possible structures observed in process $e^+e^- \rightarrow \pi^+\pi^-\psi(3686)$, Partial Wave Analysis is necessary

- Amplitude construction:
 - Method: Helicity Method

Total invariant amplitude:

$$\sum_{\lambda_{Y},\lambda_{\psi}} |\mathcal{M}_{\lambda_{Y}\lambda_{\psi}}|^{2} = \sum_{\lambda_{Y},\lambda_{\psi}} |\mathcal{A}^{R}_{\lambda_{Y}\lambda_{\psi}} + \sum_{\lambda'_{\psi}} d^{J_{\psi}}_{\lambda'_{\psi},\lambda_{\psi}}(heta_{
ho})\mathcal{A}^{Z_{c}}_{\lambda_{Y}\lambda_{\psi}}|^{2}$$

15

Amplitude analysis

Parameterization of intermediate states $BW(s) = \frac{1}{s - M_{Z^{\pm}}^2 + i(g'_1 \rho_{\pi J/\psi}(s) + g'_2 \rho_{D^* \bar{D}}(s))}$ (fixed mass and g1, g2) $\succ \pi Z_c(3900)$: : Flatte-like formula > πZ_c (4020): Breit-Wigner formula $BW(s) = \frac{1}{s - M_0^2 + i\sqrt{s\Gamma}}$ (float mass and width) $\succ \sigma(600)\psi(3686)$: $\Gamma(s) = \sqrt{1 - \frac{4m_{\pi^{\pm}}^2}{s}\Gamma}$ (fixed mass and width) \succ *f*₂(1275)ψ(3686): *BW*_{*R*}(*s*) = $\frac{1}{s - M_P^2 + iM_B\Gamma_B}$ (fixed mass and width) > NS model: $\frac{d\sigma}{dm_{-\pi}} \propto |\vec{q}| \sqrt{q^2 - 4m_{\pi}^2} \times q^4$ \blacktriangleright Non-Resonance: $1 + ce^{i\phi}M_{\pi\pi}^2$ (float c and ϕ)

• Fit Method:

- Fit tool: AmpTool package
- Toy MC: UserDIY method with BesEvtGen

Preliminary results @ 4360

Zc(4020):

- Mass: $4015.5 \pm 14.1 \, MeV/c^2$
- Width: $70.4 \pm 20.1 \, MeV/c^2$

Preliminary results @4420

Zc(4020):

- Mass: $4050.0 \pm 2.4 \ MeV/c^2$
- Width: $21.1 \pm 4.9 \ MeV/c^2$

- Several behaviors of charged charmonium-like states in $M(\pi^{\pm}\psi(3686))$ spectra from process $e^+e^- \rightarrow \pi^+\pi^-\psi(3686)$
 - The signal in Y(4220) region is Zc(3900) state instead of Zc(4020) from the reflections of different energy points
 - Zc(3900) exists also at high energy region
 - Large differences in M(π[±]ψ(3686)) spectra are observed under Y(4390) region, clear Zc(4020) is observed at √s ≥ 4.40 GeV (existence of another narrow resonance in [4.4, 4.5] GeV?)
- Partial Wave Analysis is applied and preliminary results are given
- > Next to do
 - Try more strategies to perform PWA
 - Resolution of PWA should be considered