Study of $e^+e^- \rightarrow \pi^+\pi^-\gamma\chi_{c1,2}$ and try to determine X(3823)'s parameters

Hongrong Qi^a, Changzheng Yuan^b, Liming Zhang^a,, Chengping Shen^c

^aTsinghua U., ^bIHEP, ^cFudan U.

Charmonium Group Meeting hrqi@ihep.ac.cn September 11th, 2019

Motivation

▶ Belle found an evidence of X(3823) (→ γχ_{c1}), afterwards BESIII observed the state with >5σ. It is likely a ψ(1³D₂), but no experimental evidence for its quantum number is reported up to now.
▶ We sime at determining Γ of X(2822) measuring energy sections and also

We aim at determining Γ of X(3823), measuring cross sections, and also trying to check its quantum number.

Motivation

➤ Very lately, LHCb found a extremely narrow resonant structure X(3842) (→ DD), likely ψ(1³D₃) state. According to the conservation of quantum numbers, X(3842) can also decay to γχ_{c2}. We search for it.

Data Set

Data sample	\sqrt{s} (GeV)	£ (pb ⁻¹)	In total: ~1	.5 fb ⁻¹	
4130	4.1300	400	4270	4.2668	529.7
4160	4.1600	400	4280	4.2777	175.5
4180	4.1783	3194.5	4290	4.2879	500
4190	4.1888	565.8	4315	4.3121	500
4200	4.1989	524.6	4340	4.3374	500
4210	4.2092	573.1	4360	4.3583	543.9
4220	4.2187	568.9	4380	4.3774	500
4230	4.2263	1100.9	4400	4.3965	500
4237	4.2357	530.6	4420	4.4156	1090.7
4246	4.2428	537.4	4440	4.4362	570
4260	4.2580	828.4	4600	4.5995	586.9

Event selection criteria $e^+e^- \rightarrow \pi^+\pi^-\gamma \chi_{c1,2}(\rightarrow \gamma J/\psi)$

Good Charged Tracks:

4C mixed with 1C

- $V_{xy} < 1.0 \ cm \&\& |V_z| < 10.0 \ cm (except for <math>\pi^{\pm}$ from K_S^0)
- $|\cos\theta| < 0.93$, Nchrg ≥ 3 ,
- Leptons: $P_l > 1$ GeV/c, $N_l=2$, $\sum_{i=1}^{N_l} C_i=0$; $E_l<0.4$ GeV for μ , $E_l>1.0$ GeV for e.
- Pions: $P_{trk} < 1 \text{ GeV/c}$, if $N_{\pi} = 2 \&\& \sum_{i=1}^{N_{\pi}} C_i = 0$, 4C kmfit. method will be used; else if $N_{\pi^+} = 1 || N_{\pi^-} = 1$, 1C kmfit. method will be used.
- Good Photons:
- $E_{\gamma} \ge 25 \text{ MeV for } |\cos \theta| < 0.8$
- $E_{\gamma} \ge 50 \text{ MeV for } 0.86 < |\cos \theta| < 0.92$
- $0 \le \text{TDC}_{\text{EMC}} \le 14 \text{ (50ns)}, \theta(\gamma, \text{Trk.}) > 10^{\circ}$
- $N_{\gamma} \geq 2$
- γ_H from $\chi_{c1,2}$ decay, γ_L from X decay
- Vertex Fit: official vertex fit for charged tracks

• Kinematic Fit: obtained with the least $\chi^2_{4C/1C}(\pi^+\pi^-\gamma\gamma l^+l^-)$

For 1C mode, missing a slow charged pion

BOSS Version: 7.0.4

Main Backgrounds

No.	BKG. Mode
1	$e^+e^- \rightarrow (n\gamma)l^+l^-, \gamma \rightarrow e^+e^ \rightarrow \pi^+\pi^-$
2	$e^+e^- \rightarrow \eta J/\psi, \eta \rightarrow \pi^+\pi^-\pi^0$
3	$e^+e^- \rightarrow \gamma \omega J/\psi, \ \omega \rightarrow \pi^+\pi^-\pi^0$
4	$e^+e^- \rightarrow \eta' J/\psi, \eta' \rightarrow \pi^+\pi^-\eta$
5	$e^+e^- \rightarrow (\gamma_{ISR}) J/\psi \eta(\eta'), \eta(\eta') \rightarrow \gamma \pi^+ \pi^-$
6	$e^+e^- \rightarrow \gamma_{ISR} \psi', \psi' \rightarrow \pi^+\pi^- J/\psi$
7	$e^+e^- \rightarrow \eta \psi', \psi' \rightarrow \pi^+\pi^- J/\psi, \eta \rightarrow \gamma \gamma$
8	$e^+e^- \rightarrow \gamma \gamma \psi', \psi' \rightarrow \pi^+\pi^- J/\psi$
9	

Preliminarily further selections for only 4C mode

 $\chi^2_{4C} < 80$

 J/ψ signal region: $3.08 < M(\ell^+\ell^-) < 3.12 \text{ GeV}/c^2$ χ_{c1} signal region: $3.49 < M(\gamma_H J \psi) < 3.53 \text{ GeV}/c^2$ χ_{c2} signal region: $3.536 < M(\gamma_H J \psi) < 3.576 \text{ GeV}/c^2$

The selection criteria for 4C method is almost the same as Ref.[PRL **115**, 011803 (2015)].

Study of the γ – *conversion* BKG e⁺e⁻ \rightarrow $(n\gamma)l^+l^-, \gamma \rightarrow e^+e^-$. And the e^+e^- pair is misidentified as a $\pi^+\pi^-$ pair.

After the above preliminary requirements, no clear γ -*conversion* BKG is found.

But if we check the scatter plot of $cos < \pi^+, \pi^- > versus M(\gamma_H J/\psi)$, the $\gamma - conversion$ is actually significant.

Low statistics likes an umbrella of the backgrounds.

 $\cos(\pi^+,\pi^-) < 0.98$ is a good requirement and efficiency more than 99% (~99.3%). 9

Study of the BKGs including $\pi^0/\eta \rightarrow \gamma\gamma$.

Requiring mass window of χ_{c1} , no clear π^0/η BKGs is in $M(\gamma\gamma)$.

But if no the χ_{c1} mass window is performed, the BKGs including $\pi^0/\eta \rightarrow \gamma\gamma$ emerged.

It seems that vetoing π^0 and η is necessary as follows: 1. $M(\gamma\gamma) < 0.12 \mid \mid M(\gamma\gamma) > 0.15 \text{ GeV/c}^2$ 2. $M(\gamma\gamma) < 0.52 \mid \mid M(\gamma\gamma) > 0.57 \text{ GeV/c}^2$

Also Study of the BKGs including $\pi^0/\eta \rightarrow \gamma\gamma$.

No χ_{c1} requirement here $M(\gamma\gamma\pi^+\pi^-) > 0.57$ GeV/c² in the previous letter. 0.820 $^{+}\pi^{-}\pi^{0}$ Events / (0.01 GeV/c²) М(үү) (GeV/c²) 18 0.7 10 0.2 0.10.0 1.2 0.6 0.8 1.0 0.4 0.40.6 0.8 1.2 1.4 1.0 $M(\gamma\gamma\pi^+\pi^-)$ (GeV/c²) $M(\gamma\gamma\pi^+\pi^-)$ (GeV/c²) 14 The requirements of vetoing π^0 and η looks Events / (0.01 GeV/c²) 12 better than that of $M(\gamma\gamma\pi^+\pi^-) > 0.57$ GeV/c² since it can exclude more BKGs. However, the efficiency for using $M(\gamma\gamma\pi^+\pi^-) > 0.57$, which can exclude BKGs including $\eta \rightarrow \pi^0 \pi^+ \pi^-$, is more 0.4 0.5 0.6 0.7 0.8 than 99.9% (No eff. loss) 0.9 1.2 1.3 11 0. $M(\gamma\gamma\pi^+\pi^-)$ (GeV/c²)

Study of the BKGs including $\psi(3686) \rightarrow \pi^+\pi^- J/\psi$.

Requiring mass window of χ_{c1} , no clear $\psi(3686)$ BKGs is in $M(\pi^+\pi^-J/\psi)$.

Removing the χ_{c1} mass window requirement as before....

It is better to use the requirement of excluding $\psi(3686) \rightarrow \pi^+\pi^- J/\psi$ with $|M(\pi^+\pi^- J/\psi)$ -3.686|<0.006 GeV/c².

Signal MC simulations at 4.420 GeV

Efficiency for only η veto: 88.9%

Efficiency for only $\psi(3686)$ veto: 85.1%

efficiency!

Search for optimized requirements for the $\psi(3686)$ BKGs removal.

Applying the requirements of $cos < \pi^+, \pi^- >, \chi^2_{4C}, J/\psi$ and χ_{c1} mass windows

- The projection of the $\psi(3686)$ -included BKGs on $M_{recoil}(\pi^+\pi^-)$ is just in a small range so that it is probably to form a peak in $M_{recoil}(\pi^+\pi^-)$.
- Therefore, the cut of $|M(\pi^+\pi^-J/\psi)$ -3.686|<0.006 GeV/c² is necessary to exclude the possible peaking BKGs.

Search for optimized requirements for the $\pi^0/\eta \rightarrow \gamma\gamma$ BKGs removal.

Appling the requirements of $cos < \pi^+, \pi^- >$, χ^2_{4C} , J/ψ and χ_{c1} mass windows

• The projection of the π^0/η -included BKGs on $M_{recoil}(\pi^+\pi^-)$ is in a broad range so that it won't produce a peak in $M_{recoil}(\pi^+\pi^-)$.

- According to our analysis, the main π^0/η -included BKGs are $e^+e^- \rightarrow (\eta, \gamma \omega, \eta')J/\psi$, with $\eta/\omega \rightarrow \pi^+\pi^-\pi^0$ and $\eta' \rightarrow \pi^+\pi^-\eta(\rightarrow \gamma \gamma)$. As we all known, the contributions of $(\gamma \omega, \eta')J/\psi$ events are much less than $\eta J/\psi$, so a polynomial term can describe them in the fit.
- ◆ For the BKG $e^+e^- \rightarrow \eta(\rightarrow \pi^+\pi^-\pi^0)J/\psi$, $M(\gamma\gamma\pi^+\pi^-) > 0.57$ is a good requirement due to the MC-simulated efficiency for this cut is more than 99.9%(no eff. loss).

Eventually further selections for 4C mode

- J/ψ signal region: $3.08 < M(\ell^+ \ell^-) < 3.12 \text{ GeV}/c^2$
- χ_{c1} signal region: $3.49 < M(\gamma_H J \psi) < 3.53 \text{ GeV}/c^2$
- Veto γ *consersion*: $\cos(\pi^+, \pi^-) < 0.98$
- Veto $\psi(3686)$: $|M(\pi^+\pi^-J/\psi)-3.686|<0.006 \text{ GeV/c}^2$
- Veto $\eta \rightarrow \pi^+ \pi^- \pi^0$: $M(\gamma \gamma \pi^+ \pi^-) > 0.57 \text{ GeV/c}^2$

Applying the above requirements, to check the χ^2_{4C} distribution.

The requirement $\chi^2_{4C} < 80$ is appropriate, whose efficiency is 96.0% according to MC simulation.

Signal MC simulation at 4.420 GeV

For the 1C mode, Just using the same requirements as the 4C mode. We will analyze in detail the 1C mode later.

Efficiencies of signal MC simulations

Data ID	€ _{4C} (%)	ε _{1C} (%)
4130	0.83	15.77
4180	11.46	17.71
4230	17.80	13.68
4260	18.93	12.38
4360	20.22	8.95
4420	18.73	7.45
4600	21.91	6.61

Adding the 1C mode should be helpful.

Summary for X(3823) in mixed 4C-1C mode

Summary for $X(\gamma \chi_{c2})$ in mixed 4C-1C mode

More detailed BKGs analysis for the 1C mode is needed to depress the BKGs.

Unbinned simultaneous fit for **only 4C** mode

21

•Signal PDF for X(3823): **BW** \otimes Gauss (ψ (3686) resolution) •Signal PDF for $\psi(3686)$: Single Gaussian •BKG: 1st-order chev. Poly. - Data Events / 5 MeV/c² 40 - Fit ----- Background 30 Sideband 20 PRL115, 011803 (2015) 10 0**تس** 3.6 3.7 3.8 3.9 $M_{recoil}(\pi^+\pi^-)$ (GeV/c²)

Next to do

- Further study the BKGs in the 1C mode
- Measure the product cross sections $e^+e^- \rightarrow \pi^+\pi^- X(3823)$ and the upper limit for $e^+e^- \rightarrow \pi^+\pi^- X(3842)$.
- Try to determine the J^P of X(3823) if possible.

THANK YOU FOR YOUR ATTENTION!