

Postdoctoral Postion Interview

Vinícius Franco Lima 17th July 19

Who am I?

Brazilian PhD student currently involved in the LHCb Experiment

Bachelor and Master degrees in Physics through Rio de Janeiro Federal University (UFRJ)

Currently pursuing a PhD in High Energy Physics at University of Liverpool

Involved in Analysis of Lepton Universality and the R&D and Production of the VELO Upgrade

LHCb Detector

Heavy Flavour Experiment

Precise vertex reconstruction

Tracking and momentum resolution

Particle identification capabilities

Lepton Universality

In the SM the W boson has the same coupling to all leptons.

The Z and Photon couplings were measured to have the same coupling with high precision.

Interest grew after LHCb measured the ratio between electron and muon to be 2.6 standard deviations from

Lepton Universality

$$R_{\Lambda} = \frac{\mathcal{B}(\Lambda_b \to \Lambda(pK) \ \mu^+ \mu^-)}{\mathcal{B}(\Lambda_b \to \Lambda(pK) \ e^+ e^-)}$$

Ratio_{$$\mu$$} = $\frac{\mathcal{B}(\Lambda_b \to \Lambda(pK) \ \mu^+ \mu)}{\mathcal{B}(\Lambda_b \to \Lambda(pK) \ J/\psi(\mu^+))}$

Ratio_e =
$$\frac{\mathcal{B}(\Lambda_b \to \Lambda(pK) \ e^+e^-)}{\mathcal{B}(\Lambda_b \to \Lambda(pK) \ J/\psi(e^+))}$$

The number we want to measure. It is supposed to be O(1) in SM predictions.

PID Studies

Large contribution from background modes under the Lb peak

LHCb provides a particle ID probability for each track

Biggest Background contaminations come from hadron misID

Combination of variables allow for strong bkg rejection

Fit Muon Channel

Breit-Wigner + Crystal Ball

Voigtian + Crystal Ball

Double Gaussian + Crystal Ball

Ipatia x Gaussian

COMBAT Telescope

Master dissertation project

Build a portable, low radiation length charged beam telescope

Idea was to make a system that could be easily transported and could operate in electron beams

Jsed 8 planes with Timepix readout ASICs on 150um thick n-on-p sensors

COMBAT Telescope

COMBAT was built and commissioned in Rio

Final results obtained by taking the telescope to the SPS North Area Testbeam

After alignment the residual resolution was approx. 15µm

Telescope Pointing resolution was found to be 5.1µm

VELO Upgrade

Expected fluence in the most irradiated regions up to 1.5x10¹⁴ 1MeV n_{eq}/ cm² per fb⁻¹

Radiation flux follows r^{-2.3} shape.

Proximity to interaction region: 5.1mm

Total Integrated Luminosity: 50fb⁻¹ !

 $2.0_{|}$ cm^{-2}] 10¹⁴ 1 MeV n_{eq} 0 0.8 0.6 × 0.0 × 0.4 0.2 0.0

VELO Upgrade Module ~43 mm ~14 mm VeloPix VeloPix VeloPix ASIC ASIC ASIC

Silicon µChannel Substrate

VeloPix ASIC

Silicon Sensors

Kapton Hybrids

Hybrid Pixel Detectors

Technology chosen for the upgrade.

Planar silicon sensors (768x256) bump bonded to 3 custom ASICs (256x256).

ASIC has a pre-amplifier, threshold comparison and timestamping for each pixel.

Sensors

Many options available!

n-on-p or n-on-n Guard Ring Sizes: 150 to 600 µm Implant Sizes: 35, 36 and 39 μ m Thickness: 150 or 200 μ m **Vendors: HPK or Micron**

n-on-p 00 cut edge dicing street

n-on-n

Max Operational Bias Voltage: 1000V

Minimum collected charge per MIP: 6000e-

The sensors must be able to operate under these conditions up to 8x10¹⁵ 1MeV n_{eq}cm⁻²

HV Tolerance

irradiation:1000V.

after irradiation.

HV Tolerance

Typical Irradiation profile at IRRAD

Tile Quality Assurance

During prototype testing it became clear that sensors spark if biased above 400V in air.

Ground pads of the ASIC are directly below the sensor edge.

How to probe assemblies in vacuum before wire bonding?

Tile Quality Assurance

Due to the the way the VeloPix CMOS ASIC is built a diode is formed.

Ground is brought to the implant through the ASIC.

Reverse-biasing the sensor is forward bias in the VeloPix bulk.

Probe Card Jig

All tiles will be tested and qualified with this jig.

HV Vacuum Tests

Enclosure built to do IV scans of sensors in vacuum.

Must be careful to avoid damaging the tiles.

HV Vacuum Tests

Spring loaded probe needles keep small pressure on sensors.

Dowels stop needles before end of spring compression.

HV Vacuum Tests

Upgrade Tracker

In a similar fashion to the VELO the UT is a new silicon detector to be installed in LHCb

40 MHz readout using the SALT ASIC

4 different types of silicon microstrip sensors

My intention is to contribute to the production and commissioning of the UT.

Summary

As part of my PhD I have also contributed to the Lepton Universality measurement using Λ_b decays

Actively participated in the R&D for VELO Upgrade being responsible for IV measurements

Setup for Tile quality assurance in the VELO Upgrade currently used to test all VELO sensors during production

Looking forward to contribute to the UT detector commissioning

I have been involved with silicon sensors for tracking since my Master's degree with COMBAT

Thank you!

Backup

Edge Behaviour

S27 -1000V

400

200

A couple of interesting features were observed at the edge of the sensors.

The Micron n-on-n design had a very high intensity noise at the edges.

Problem mitigated when we increase leakage current compensation in the ASIC.

Consistent with leakage current being pushed through the pixels due to guard-ring structure.

Tile Quality Assurance

Does it work with a bumpbonded tile?

Tile Quality Assurance

Does it work with a bumpbonded tile?

Probe Card Jig

them to modules?

LHCb Detector Upgrade

By the end of Run II, operating at current luminosity offers diminishing returns.

Increasing Luminosity in order to achieve 50fb⁻¹ in Run III.

4x10³² cm⁻²s⁻¹ → 20x10³²cm⁻²s⁻¹

Upgrade Trigger implemented on software only.

Readout: 1 MHz → 40 MHz

MisID p.d.f. Estimation

The incorrect identification of final state particles might produce a broad peak under our signal

KeysPDF is a numerical method used to generate functions from a given dataset

Different options of this method were evaluated, and we chose appropriate parameters

PID Studies

Large contribution from background modes under the Lb peak.

LHCb provides a combination of detectors response in the form of a PID probability

Biggest Background contaminations come from hadron misID.

PID Studies

Large contribution from background modes under the Lb peak.

LHCb provides a combination of detectors response in the form of a PID probability

Biggest Background contaminations come from hadron misID.

Radiation dose $(10^{16} n_{eq} / cm^2)$

DAQ

VeloPix hybrids being tested with LHCb Upgrade Readout boards.

Firmware integrated pre-existing software, most necessary procedures already in place.

• Check the flatness of the surface using the white light interferometer.

Cluster Sizes Distributions

Fraction of Clusters

Non-Irradiated Micron n-on-p

Post-Irradiation Micron n-on-p

Charge Collection and Depletion Depth

Non-Uniform proton Irradiated sensors at IRRAD.

Combining dosimetry measurements to activation of the sensors.

Non-uniform profile allows study of charge collection as a function of fluence.

Charge Collection

Charge Collection and Depletion Depth

Non-Uniform proton Irradiated sensors at IRRAD.

Non-uniform profile allows study of charge collection as a function of dose.

Correlate dosimetry measurements to activation on the sensors.

Charge Collection and Depletion Depth

sensors at IRRAD.

