

Recent Results on Charmed Baryons at Belle

Xingyu Zhou (周兴玉) Beihang University

Joint Workshop on Charmed Hadron Decays

@ BESIII, BELLE, LHCb 2019

Shanxi Normal University, Linfen, Shanxi

Outline

- Introduction
- Observation of $\Xi_c(2930)^0$ and evidence of $\Xi_c(2930)^+$
- First measurements of Ξ_c absolute branching fractions
- First measurements of $B^- o \overline{\Lambda}_c^- \Xi_c^{*0}$ branching fractions
- Determination of $\Lambda_c/\Sigma_c(2765)^+$ isospin
- Summary & prospect

Thank Yubo Li (李郁博), Peking Univ. and Chengping Shen (沈成平), Fudan Univ. for their good works.

Introduction to charmed baryon studies(I)

- The singly charmed baryon is composed of a charm quark and two light quarks.
- Charmed baryon spectroscopy provides an excellent ground for studying the dynamics of light quarks in the environment of a heavy quark.
- Charmed baryon spectroscopy also offers an excellent laboratory for testing heavy-quark symmetry of c and b quarks or chiral symmetry of light quarks, both of which have important implications for the low-energy dynamics of heavy baryons interacting with Goldstone bosons.
- Weak decays of charmed hadrons play a unique role in the study of strong interactions, as the charm mass scale is near the boundary between perturbative and non-perturbative QCD.
- Decays of charmed baryons provide complementary information to that of charmed-meson decays.

Introduction to charmed baryon studies(II)

- Although many charmed baryons have been discovered, there are still some unobserved.
 - Observation of them will provide more information to understand the physics in the charmed baryon sector.
- Although many efforts have been made to identify the quantum numbers of discovered charmed baryons, but most of them have not yet been determined experimentally.
 - Determination of them helps to figure out the nature of the charmed baryons.
- Decays of charmed mesons $(D^0, D^+, \text{ and } D_s^+)$ are all well measured, but except for Λ_c^+ , absolute branching fractions (BFs) of charmed baryons have not yet been measured.
 - Measurement of the absolute BFs is crucial to validate relevant theoretical models as well as to constrain the model parameters.

Introduction to Belle experiment

Data taking: 1999—2010

On/off/Scan Y(nS) peaks

Total luminosity: 980 fb^{-1}

772M $B\overline{B}$ events @ Y(4S)

Observation of $\Xi_c(2930)^0$ and Evidence of $\Xi_c(2930)^+$

- Observation of $\Xi_c(2930)^0$ in $K^-\Lambda_c^+$ of $B^- \to K^-\Lambda_c^+\overline{\Lambda}_c^-$ [EPJC 78, 252]
- Evidence of $\Xi_c(2930)^+$ in $\overline{K}^0\Lambda_c^+$ of $\overline{B}^0 \to \overline{K}^0\Lambda_c^+\overline{\Lambda}_c^-$ [EPJC 78, 928]

Motivation (I)

■ BarBar studied $B^- \to K^- \Lambda_c^+ \overline{\Lambda}_c^-$, and found a vague structure named $\Xi_c(2930)$ in $M_{K^+ \Lambda_c^+}$ spectrum and two small peaks in $M_{\Lambda_c^+ \overline{\Lambda}_c^-}$ spectrum. [PRD 77, 031101].

- $\Xi_c(2930)$ a mass of [2931 ± 3(stat.) ± 5(syst.)] MeV/ c^2 and a width of [36 ± 7(stat.) ± 11(syst.)] MeV. $\Xi_c(2930)$
 - Neither the results of the fit to their spectrum nor the significance of the signal were given
- Belle has previously studied $B^- \to K^- \Lambda_c^+ \overline{\Lambda}_c^-$ with 386M $B\overline{B}$ events but the distributions of the intermediate $K^- \Lambda_c^+$ systems have not been presented. [PRL 97, 202003]
- A good chance to use the full Belle data sample of 772M $B\overline{B}$ events to test the existence of $\Xi_c(2930)$

Motivation (II)

Belle reported a structure named Y(4630) in $M(\Lambda_c^+ \overline{\Lambda}_c^-)$ spectrum of $e^+e^- \rightarrow$ $\gamma_{\rm ISR}\Lambda_{\rm c}^{+}\overline{\Lambda}_{\rm c}^{-}$ [PRL 101, 172001]

- As its mass is very close to that of the Y(4660) observed by Belle in $M(\pi^+\pi^-\psi')$ spectrum of $e^+e^- \rightarrow \gamma_{ISR}\pi^+\pi^-\psi'$, many theoretical explanations assume they are the same.
- Also, some theory explained that Y(4660) has a large partial decay width to $\Lambda_c^+ \overline{\Lambda}_c^-$ and it's spin partner Y_n is predicted. [PRD 82, 094008; PRL102, 242004]
- So the $B \to K\Lambda_c^+ \overline{\Lambda}_c^-$ decay mode can be used to search for Y(4660) and Y_{η} by studing $M(\Lambda_c^+ \overline{\Lambda}_c^-)$ spectrum.

Observation of $\Xi_c(2930)^0$ in $K^-\Lambda_c^+$ of $B^-\to K^-\Lambda_c^+\overline{\Lambda}_c^-$

- First strange-charmed baryon established in B decays
- Clear confirmation of the Babar claim

$$N_{\Xi_c} = 61 \pm 16$$

$$M_{\Xi_c(2930)} = (2928.9 \pm 3.0^{+0.9}_{-12.0}) \text{ MeV/}c^2$$

$$\Gamma_{\Xi_c(2930)} = (19.5 \pm 8.4^{+5.9}_{-7.9}) \text{ MeV}.$$

$$\mathcal{B}(B^- \to \Xi_c(2930)\bar{\Lambda}_c^-)\mathcal{B}(\Xi_c(2930) \to K^-\Lambda_c^+) = (1.73 \pm 0.45 \pm 0.21) \times 10^{-4}$$

Evidence of $\Xi_c(2930)^+$ in $\overline{K}^0\Lambda_c^+$ of $\overline{B}^0\to \overline{K}^0\Lambda_c^+\overline{\Lambda}_c^-$

The mass and width difference between neutral and charged $\Xi_c(2930)$

$$\Delta m = [-13.4 \pm 5.3(\text{stat.})^{+1.7}_{-12.1}(\text{syst.})] \text{ MeV/}c^2$$

$$\Delta\Gamma = [4.7 \pm 12.2(\text{stat.})^{+6.4}_{-8.3}(\text{syst.})] \text{ MeV}$$

After this measurement, $* \rightarrow **$

$$\Xi_c(2930)$$

$$I(J^P) = ?(?^?)$$
 Status: $**$

$$N_{\Xi_c(2930)^+} = 21.2 \pm 4.6$$

$$M_{\Xi_c(2930)^+} = [2942.3 \pm 4.4(\text{stat.}) \pm 1.5(\text{syst.})] \text{ MeV/}c^2$$

$$\Gamma_{\Xi_c(2930)^+} = [14.8 \pm 8.8(\text{stat.}) \pm 2.5(\text{syst.})] \text{ MeV}.$$

$$\mathcal{B}(\bar{B}^0 \to \Xi_c(2930)^+\bar{\Lambda}_c^-)\mathcal{B}(\Xi_c(2930)^+ \to \bar{K}^0\Lambda_c^+) = [2.37 \pm 0.51(\text{stat.}) \pm 0.31(\text{syst.})] \times 10^{-4}$$

Search for Y(4660) and Y_{η} in $\Lambda_c^+ \overline{\Lambda}_c^-$ of $B^- \to K^- \Lambda_c^+ \overline{\Lambda}_c^-$

- No Y(4660) and Y_{η} signals were observed in the $\Lambda_c^+ \overline{\Lambda}_c^-$ invariant mass distribution of $B^- \to K^- \Lambda_c^+ \overline{\Lambda}_c^-$.
- 90% C.L. upper limits of $B^- \to K^- Y(4660) \to K^- \Lambda_c^+ \overline{\Lambda}_c^-$ and $B^- \to K^- Y_\eta \to K^- \Lambda_c^+ \overline{\Lambda}_c^-$ are 1.2×10^{-4} and 2.0×10^{-4} .

Search for Y(4660) and Y_η in $\Lambda_c^+ \overline{\Lambda}_c^-$ of $\overline{B}{}^0 \to \overline{K}{}^0 \Lambda_c^+ \overline{\Lambda}_c^-$

- No Y(4660) and Y_{η} signals were observed in the $\Lambda_c^+ \overline{\Lambda}_c^-$ invariant mass distribution of $\overline{B}{}^0 \to \overline{K}{}^0 \Lambda_c^+ \overline{\Lambda}_c^-$.
- 90% C.L. upper limits of $\overline{B}^0 \to \overline{K}^0 Y(4660) \to \overline{K}^0 \Lambda_c^+ \overline{\Lambda}_c^-$ and $\overline{B}^0 \to \overline{K}^0 Y_\eta \to \overline{K}^0 \Lambda_c^+ \overline{\Lambda}_c^-$ are 2.2×10^{-4} and 2.3×10^{-4} .

First Measurements of Absolute Branching Fractions of the Ξ_c^0 and Ξ_c^+ Baryons

•
$$\Xi_{c}^{0} \to \Lambda K^{-}\pi^{+}$$

• $\Xi_{c}^{0} \to pK^{-}K^{-}\pi^{+}$
[PRL 122, 082001]
• $\overline{B}^{0} \to \overline{\Lambda}_{c}^{-}\Xi_{c}^{+}$:
• $\Xi_{c}^{+} \to \Xi^{-}\pi^{+}\pi^{+}$
• $\Xi_{c}^{+} \to pK^{-}\pi^{+}$
[PRD 100, 031101 (R)]

 $B^- o \overline{\Lambda}_c^- \Xi_c^0$:

 $\bullet \quad \Xi_c^0 \to \Xi^- \pi^+$

Motivation (I)

- In SU(3) anti-triplet charmed baryons, only Λ_c^+ absolute BFs were measured by Belle [PRL 113, 042002] and BESIII [PRL 116,052001]
- Though Ξ_c^0 [PRL 62,863(1989)] and Ξ_c^+ [PLB 122,455(1983)] have been discovered for ~30 years, no absolute BFs were measured
- For Ξ_c^0 , the BFs are all measured relative to $\Xi^-\pi^+$
- For Ξ_c^+ , the BFs are all measured relative to $\Xi^-\pi^+\pi^+$
- Once the absolute BFs of $\Xi_c^0 \to \Xi^- \pi^+$ and $\Xi_c^+ \to \Xi^- \pi^+ \pi^+$ are measured, the absolute values of all the BFs measured relative to them can be calculated

Motivation (II)

- $\Xi_c^0 \to pK^-K^-\pi^+$ and $\Xi_c^+ \to pK^-\pi^+$ are the fundamental decay modes to reconstruct Ξ_c^0 and Ξ_c^+ at LHCb
 - ➤ Their absolute BFs are important input for the studies of **bottom baryons** and **double charmed baryons** at **LHCb**
- In theory:

```
\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) \approx 1.12\% \text{ or } 0.74\% \text{ [PRD48,4188]}

\mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+) = (1.47 \pm 0.84)\% \text{ [PRD97,073006]}

\mathcal{B}(\Xi_c^+ \to pK^- \pi^+) = (2.2 \pm 0.8)\% \text{ [EPJC78,224; CPC42,051001]}
```

- Experimental information is crucial to validate theoretical models and constrain model parameters
- The decay $B \to \overline{\Lambda}_c^- \Xi_c$, proceeds via the transition $b \to c\overline{c}s$, BF $\sim 10^{-3}$ in theoretical calculation
 - ightharpoonup A good chance to analyze $B \to \overline{\Lambda}_c^- \Xi_c$ at Belle

Method

- Measured by Ξ_c exclusive decays
- Fully reconstruct the signals
- Extract signal yields from ΔE and M_{bc}

$$\Delta E = \Sigma_i E_i - E_{\text{beam}}$$
 $M_{\text{bc}} = \sqrt{E_{\text{beam}}^2 - (\Sigma_i \vec{p}_i)^2}$

$$\mathcal{B}(\Xi_c \to xxx) = \frac{\mathcal{B}(B \to \overline{\Lambda}_c^- \Xi_c) \mathcal{B}(\Xi_c \to xxx)}{\mathcal{B}(B \to \overline{\Lambda}_c^- \Xi_c)}$$

Data sample of 772M $B\overline{B}$ events @ Y(4S)

- Measured by $\mathbf{\Xi}_{\mathbf{c}}$ inclusive decays
- Tag a B and reconstruct a $\overline{\Lambda}_c^-$
- Using a missing-mass technique
- Extract signal yields from $M_{B_{tag}^{0}\overline{\Lambda}_{c}}^{rec}$ spectra

Measurement of $\mathcal{B}(B^- o \overline{\Lambda}_c^- \Xi_c^0)$

- B⁺ tagged with FR algorithm
- $\overline{\Lambda}_c^-$ reconstructed via $\overline{p}K^+\pi^-$ and $\overline{p}K_s^0$

- Fitted result: $N(\Xi_c^0) = 40.9 \pm 9.0$
- $\mathcal{B}(B^- \to \overline{\Lambda}_c^- \Xi_c^0) = (9.51 \pm 2.10 \pm 0.88) \times 10^{-4}$
- First measurement of $\mathcal{B}(B^- \to \overline{\Lambda}_c^- \Xi_c^0)$

$\mathbf{\Xi}_{c}^{0}$ exclusive yields

$\mathbf{\Xi}_{c}^{0}$ exclusive BFs

BF	Result	Theory	PDG
$\mathcal{B}(B^- o \overline{\Lambda}_c^- \Xi_c^0)$	$(9.51 \pm 2.10 \pm 0.88) \times 10^{-4}$	~ 10 ⁻³	
$\mathcal{B}(B^- o \overline{\Lambda}_c^- \Xi_c^0) \mathcal{B}(\Xi_c^0 o \Xi^- \pi^+)$	$(1.71 \pm 0.28 \pm 0.15) \times 10^{-5}$		$(2.4 \pm 0.9) \times 10^{-5}$
$\mathcal{B}(B^- \to \overline{\Lambda}_c^- \Xi_c^0) \mathcal{B}(\Xi_c^0 \to \Lambda \mathrm{K}^- \pi^+)$	$(1.11 \pm 0.26 \pm 0.10) \times 10^{-5}$		$(2.1 \pm 0.9) \times 10^{-5}$
$\mathcal{B}(B^- \to \overline{\Lambda}_c^- \Xi_c^0) \mathcal{B}(\Xi_c^0 \to pK^-K^-\pi^+)$	$(5.47 \pm 1.78 \pm 0.57) \times 10^{-6}$		
$\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)$	$(1.80 \pm 0.50 \pm 0.14)\%$	1.12% or 0.74%	
$\mathcal{B}ig(\Xi_c^0 o\Lambda\mathrm{K}^-\pi^+ig)$	$(1.17 \pm 0.37 \pm 0.09)\%$		
$\mathcal{B}(\Xi_c^0 \to pK^-K^-\pi^+)$	$(0.58 \pm 0.23 \pm 0.05)\%$		
$\mathcal{B}ig(\Xi_c^0 o \Lambda K^- \pi^+ig)/\mathcal{B}ig(\Xi_c^0 o \Xi^- \pi^+ig)$	$0.65\pm0.18\pm0.04$		$\textbf{1.07} \pm \textbf{0.14}$
$\mathcal{B}ig(\Xi_c^0 o pK^-K^-\pi^+ig)/\mathcal{B}ig(\Xi_c^0 o\Xi^-\pi^+ig)$	$0.32\pm0.12\pm0.07$		$\textbf{0.34} \pm \textbf{0.04}$

PRL 122, 082001

- First measurements of absolute BFs of Ξ_c^0
- $\mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)$ can be used to determine the absolute values of other Ξ_c^0 decay BRs

Measurement of $\mathcal{B}(\overline{B}^0 \to \overline{\Lambda}_c^-\Xi_c^+)$

- B^0 Tagged with FR algorithm
- $\overline{\Lambda}_c^-$ reconstructed via $\overline{p}K^+\pi^-$

- Fitted result: $N(\Xi_c^+) = 18.8 \pm 6.8$
- $\mathcal{B}(\overline{B}^0 \to \overline{\Lambda}_c^- \mathcal{Z}_c^+) = (1.16 \pm 0.42 \pm 0.15) \times 10^{-4}$
- First model-independent measurement of $\mathcal{B}(\overline{B}^0 \to \overline{\Lambda}_c^- \Xi_c^+)$

Ξ_c^+ exclusive yields

$$\Xi_c^+ \to \Xi^- \pi^+ \pi^+$$

$$N = 24.2 \pm 5.4$$

$$6.9\sigma$$

$$\mathcal{E}_c^+ \to p \text{K}^- \pi^+ \text{N}$$
$$= 24.0 \pm 6.9$$
$$4.5\sigma$$

Ξ_c^+ exclusive BFs

BF	Result	Theory	PDG
$\mathcal{B}(\overline{B}^0 \to \overline{\Lambda}_c^- \Xi_c^+)$	$(1.16 \pm 0.42 \pm 0.15) \times 10^{-3}$	~ 10 ⁻³	
$\mathcal{B}(\overline{B}^0 \to \overline{\Lambda}_c^- \Xi_c^+)) \mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)$	$(3.32 \pm 0.74 \pm 0.33) \times 10^{-5}$		$(1.8 \pm 1.8) \times 10^{-5}$
$\mathcal{B}(\overline{B}^0 \to \overline{\Lambda}_c^- \Xi_c^+) \mathcal{B}(\Xi_c^+ \to pK^-\pi^+)$	$(5.27 \pm 1.51 \pm 0.69) \times 10^{-5}$		
$\mathcal{B}(\Xi_c^+ o \Xi^- \pi^+ \pi^+)$	$(2.86 \pm 1.21 \pm 0.38)\%$	$(1.47 \pm 0.84)\%$	
$\mathcal{B}(\Xi_c^+ \to pK^-\pi^+)$	$(0.45 \pm 0.21 \pm 0.07)\%$	$(2.2 \pm 0.8)\%$	
$\mathcal{B}(\Xi_c^+ \to pK^-\pi^+)/\mathcal{B}(\Xi_c^+ \to \Xi^-\pi^+\pi^+)$	$0.16\pm0.06\pm0.02$		$\textbf{0.21} \pm \textbf{0.04}$

PRD 100, 031101(R)

- First measurements of absolute BFs of Ξ_c^+
- $\mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)$ can be used to determine the absolute values of other Ξ_c^+ decay BFs
- $\mathcal{B}(\Xi_c^+ \to pK^-\pi^+)$ is smaller theoretical prediction
 - ➤ Indicating a large U-spin symmetry breaking?

Summary

- We studied $B \to \overline{\Lambda}_c^- \Xi_c^{0,+}$ with $\Xi_c^{0,+}$ decay exclusively and inclusively
- The absolute BFs of $\Xi_c^{0,+}$ are measured for the first time

	Ξ_c^0
${\cal B}ig(\Xi_c^0 o\Xi^-\pi^+ig)$	$(1.80 \pm 0.50 \pm 0.14)\%$
$\mathcal{B}\left(\Xi_c^0 o \Lambda K^-\pi^+ ight)$	$(1.17 \pm 0.37 \pm 0.09)\%$
$\mathcal{B}(\Xi_c^0 \to pK^-K^-\pi^+)$	$(0.58 \pm 0.23 \pm 0.05)\%$

	Ξ_c^+
$\mathcal{B}(\Xi_c^+\to\Xi^-\pi^+\pi^+)$	$(2.86 \pm 1.21 \pm 0.38)\%$
$\mathcal{B}(\Xi_c^+ \to pK^-\pi^+)$	$(0.45 \pm 0.21 \pm 0.07)\%$

• The absolute BFs of $B \to \overline{\Lambda}_c^- \Xi_c^{0/+}$ are measured for the first time as well

```
B(B^- \to \overline{\Lambda}_c^- \Xi_c^0) (9.51 ± 2.10 ± 0.88) × 10<sup>-4</sup>
```

$$\mathcal{B}(\overline{B}^0 \to \overline{\Lambda}_c^- \Xi_c^+)$$
 (1.16 ± 0.42 ± 0.15) × 10⁻³

First measurements of $B^- \to \Lambda_c^- \Xi_c^{*0}$ branching fractions

- $\bullet \quad B^- \to \overline{\Lambda}_c^- \Xi_c^{\prime 0}$
- $\bullet \quad B^- \to \overline{\Lambda}_c^- \Xi_c (2645)^0$
- $\bullet \quad B^- \to \overline{\Lambda}_c^- \Xi_c^0 (2970)^0$

(Paper draft is in the final polishment stage)

Motivation

- In the previous part of this talk, the absolute BFs of B $\rightarrow \overline{\Lambda}_c^- \Xi_c^{0/+}$ as well as the absolute BFs of $\Xi_c^{0,+}$ are measured
- In those works, only the $\Xi_c^{0/+}$ region of Λ_c^- recoil mass is focused on.
- A natural question is: can we observe the excited Ξ_c states in the higher region of $\overline{\Lambda}_c^-$ recoil mass.
- In this part, we present the first measurements of branching fractions of the decays $B^- \to \overline{\Lambda}_c^- \Xi_c^{\prime 0}$, $B^- \to \overline{\Lambda}_c^- \Xi_c^- (2645)^0$, and $B^- \to \overline{\Lambda}_c^- \Xi_c^0 (2970)^0$, using a missing-mass technique.
- We measure the branching fractions via the inclusive Ξ_c^{*0} decays, and do not see significant signals in the exclusive Ξ_c^{*0} decays

Result of $\mathcal{B}(\overline{B}^- \to \overline{\Lambda}_c^- \Xi_c^{*0})$

The empty space between the fitted background level and the normalized sidebands histogram is the contribution from other multi-body

$$B^- \to \bar{\Lambda}_c^- + anything$$
 decays.

Since in the fit to the data the statistical significances of $\Xi_c^{\prime 0}$ and $\Xi_c(2645)^0$ are less than 3σ , upper limits at 90% credibility level (C.L.) on the numbers of $\Xi_c^{\prime 0}$ and $\Xi_c(2645)^0$ are determined.

)		Significance (σ)
$\Xi_c^{'0}$	18 ± 10	$(3.4 \pm 2.0 \pm 0.4) \times 10^{-4} [6.5 \times 10^{-4}]$	1.7
$\Xi_c(2645)^0$	24 ± 13	$(4.4 \pm 2.4 \pm 0.5) \times 10^{-4} \ [7.9 \times 10^{-4}]$	1.9
$\Xi_c(2790)^0$	60 ± 22	$(1.1 \pm 0.4 \pm 0.2) \times 10^{-3}$	3.1

Experimental Determination of the Isospin of $\Lambda_c/\Sigma_c(2765)^+$

• Search for its isospin partners in $\Sigma_c(2455)^{++/0} \pi^0$

[arXiv:1908.06235]

Introduction (I)

- A few dozens of charmed baryons have been discovered, but in most cases their quantum numbers have not yet been determined experimentally [PRD 98, 030001]
- In particular, for higher excited states with excitation energies greater than 400 MeV, unique identification is not possible, because quark models predict several states within their typical mass uncertainties of ~50 MeV/c² [PRD 34, 2809; IJMPA 23, 2817; PRD 92, 114029]
- $\Lambda_c/\Sigma_c(2765)^+$ is the **lightest** charmed baryon for which there is no assumed quark-model identification.

$$\Lambda_c(2765)^+$$
 or $\Sigma_c(2765)$

$$I(J^P) = ?(??)$$
 Status: *

Introduction (II)

- $\Lambda_c/\Sigma_c(2765)^+$ is first observed by CLEO in $\Lambda_c^+\pi^+\pi^-$ [PRL 86, 4779] and later confirmed by Belle in $\Sigma_c(2455)^{++/0}\pi^{-/+}$ [PRL 98, 262001]
- Quark models: six states in this mass region $I(J^P) = 0(1/2^+), 0(1/2^-), 1(1/2^-), 1(1/2^-), 1(3/2^-), 1(3/2^-),$
 - ➤ Including other models, any combination of I=0 or 1, J=1/2 or 3/2, and P=+ or – seems possible
- Experimental determination of $I(J^P)$ is necessary to identify the nature of $\Lambda_c/\Sigma_c(2765)^+$
- In this part, we present a determination of the isospin of $\Lambda_c/\Sigma_c(2765)^+$ by searching for its possible isospin partners $\Sigma_c(2765)^{++/0}$ in the $\Sigma_c(2455)^{++/0}$ $\pi^0 \rightarrow \Lambda_c^+ \pi^{+/-} \pi^0$ modes
- Determination of spin-parity (J^P) will be coming soon.

Reference mode: $\Sigma_c(2455)^{++/0}\pi^{-/+}$

- Analyzed with full Belle datasets of 980 fb⁻¹
- Clear peaks of $\Lambda_c/\Sigma_c(2765)^+$ are observed
- Fit with Breit-Wigner functions to extract signal yields.

Result of Searching for $\Sigma_c(2455)^{++/0}\pi^0$

Fitted result

- No significant $\Sigma_c(2455)^{++/0} \pi^0$ signals are seen, contrary to the expectation for I=1
- Isospin of $\Lambda_c/\Sigma_c(2765)^+$ is **not 1 but 0**; the name should be $\Lambda_c(2765)^+$

Summary & prospect

- Although Belle stopped data taking about ten years ago, it is still producing many excited results on charmed baryons
 - **Observation of** $\Xi_c(2930)^0$ **and evidence of** $\Xi_c(2930)^+$
 - \triangleright First measurements of Ξ_c absolute branching fractions
 - First measurements of $B^- \to \overline{\Lambda}_c^- \Xi_c^{*0}$ branching fractions
 - **Determination of** $\Lambda_c/\Sigma_c(2765)^+$ isospin
- Belle II has already started data taking, and will accumulate 50
 ab⁻¹ datasets by 2027, which will provide greater sensitivity and precise measurements in the spectroscopy and decays of charmed baryons

Belle II physics book (arXiv:1808.10567)

https://arxiv.org/abs/1808.10567

Backup

Longer Term Plan

Use this until we officially revise

(The plot used in my opening talk is temporal, and has been removed)

Full PXD installation

- Make it ready as early as possible, and install it as late as possible.
- Timing for long shutdown must be decided taking account of
 - · Situation of the installed detector
 - Physics need (scenario)
 - Impact for funding

TOP MCP-PMT can be installed at any summer shutdown (after 2021, most likely in 2021

We will revise the long-term plan in February, after learning more in the autumn run (2019c).

Introduction

- Charm energy scale, $\alpha_s \sim 1$:
 - □ boundary of (non-)perturbative
 - □ platform for strong interaction study

- Charmed baryons offer more information:
 - W-exchange diagrams can contribute without the helicity suppression
 - > Internal W emission is significant.
 - Parity violation is readily observable because the decay of the daughter hyperon also violates parity.
 - Testing heavy quark symmetry and light quark chiral symmetry

Introduction

- Charmed Baryons are difficult to produce
 - > no resonant production mechanisms
 - > continuum production with small cross-sections
- Products in the decays of heavy mesons
 Or high energy colliders

B meson tagging

- B mesons come from $\Upsilon(4S) \to B\bar{B}$
- If we reconstruct a B_{tag} , the recoil is B_{sig}
- 1042 B decay channels, 71 neural networks
- Overall efficiencies:

 $0.36\% \text{ for } B^+$

0.24% for B^0

Full Reconstruction (FR) algorithm

Back Up

● HadonB(J) skim;

- 1. |dr|<0.5 and |dz|<2cm; Pt>0.1GeV for all charged tracks;
- Pt for all charged particle >0.1GeV/c;

For particle identification:

- 1. $\frac{\mathcal{L}(\pi)}{\mathcal{L}(\pi) + \mathcal{L}(K)} > 0.6 \text{ for } \pi;$
- 2. $\frac{L(K)}{L(K)+L(\pi)} > 0.6$ for K;
- 3. $\frac{\mathcal{L}(p)}{\mathcal{L}(p)+\mathcal{L}(\pi)} > 0.6$ and $\frac{\mathcal{L}(p)}{\mathcal{L}(p)+\mathcal{L}(K)} > 0.6$ for (anti-)proton;
- ullet Apply vertex and mass fit for $\Lambda_c^+(\Xi_c^0)$ candidates, vote events with $\chi^2/ndf>15$
- ullet K_S candidates are selected by nisKsFinder and Applied vertex and mass fit, vote events with $\chi^2/ndf > 50$
- ullet Λ candidates from Vee2 bank, Applied vertex and mass fit, vote events with $\chi^2/ndf>50$

Full Reconstruction

Neural network(NN) based full reconstruction used to tag B^{\pm} .

tag B^{\pm} cont_NBRank are required to be 1

NN output with continuum suppression are required:

$$\log(O_{NB}) > -4$$

 Λ_c^{\pm} have opposite charge with tag B^{\pm} .

$\Lambda_c^+ \to p K^- \pi^+ \text{ mode}$

 $\chi^2_{mass\,vertex}$ distribution of mass and vertex fit to Λ_c^+ . MC histogram is normalized to the data according to the first 5 bins.

Red arrows indicate the cut we applied:

$$\chi^2_{mass\ vertex} < 15$$

How to determine $I(J^P)$?

- Spin (J): angular distribution of the decay $\Lambda_c/\Sigma_c(2765) \rightarrow \Sigma_c^{(*)}\pi$ & angular correlation of two pions in $\Lambda_c/\Sigma_c(2765) \rightarrow \Sigma_c^*\pi_1 \rightarrow \Lambda_c\pi_1\pi_2$
- Parity (P): Use branching ratio (used for Λ_c (2880)) $R = \frac{\Gamma(\Lambda_c^* \to \Sigma_c^* \pi)}{\Gamma(\Lambda_c^* \to \Sigma_c \pi)}$
- Isospin (I): Search for possible isospin partners $(\Sigma_c(2765)^{++/0})$ by

$$\Sigma_c(2455)^{++/0} \pi^0 \rightarrow \Lambda_c^+ \pi^{+/-} \pi^0$$
 modes

Can it be seen in other modes?

• Not in inclusive $\Lambda_c K$ [Babar: PRD77.012002]

• There is a hint in $\Xi_c \pi \pi$ mode [Belle: PRD94, 052011], but not conclusive. Anyway much fewer than Ξ_c (2970).

May have a different structure from others

Spin-parity?

- Spin could be determined from angular distribution, i.e., line density in the Dalitz plot, if we have enough statistics...
- We have to wait for Belle II
- Parity needs
 even more
 (polarization, ...)

