Charm meson leptonic and semileptonic decays at BESIII

Sifan Zhang on behalf of the BESIII collaboration

NJU, IHEP

November 2, 2019

Joint Workshoop on Charmed Hadron Decays @ BESIII, BELLE, LHCb 2019 Shanxi Normal University, Linfen

Motivation

- test the unitarity of quark mixing matrix and search for new physics.
- test the theoretical calculation on decay constants and form factors, especially LQCD.
- test the lepton flavor universality.
- help to understand the internal structure of light scalar mesons.

Experiments at the charm factory

Pair production at threshold, high efficiency and very low background.

With fully reconstructed tracks, neutrino information can be accessed via missing energy and momentum

$$U_{\rm miss} = E_{\rm miss} - |\vec{p}|_{\rm miss}$$

$$M_{\rm miss}^2 = E_{\rm miss}^2 - |\vec{p}|_{\rm miss}^2$$

November 2, 2019 3 / 24

BESIII

November 2, 2019 4 / 24

D_{s}^{+} leptonic decays

Charm meson leptonic and semileptonic decays at BE November 2, 2019

Comparison of $\left|V_{cs}\right|$ and $f_{D_s^+}$

Inputs:

PDG2018 from CKM unitarity: $|V_{cs}| = 0.97359^{+0.00010}_{-0.00011}$

LQCD average:

$$f_{D_s^+}^{LQCD} = 249.7 \pm 0.4 \text{ MeV}$$

 $f_+^{D \to K}(0)^{LQCD} = 0.760 \pm 0.011$

Charm meson leptonic and semileptonic decays at BE

D^+ leptonic decays

$$R_{D^+} = \frac{\Gamma(D^+ \to \tau^+ \nu_{\tau})}{\Gamma(D^+ \to \mu^+ \nu_{\mu})} = 3.21 \pm 0.64 \pm 0.43$$

SM prediction 2.67 ± 0.01 .

- 4 @ > - 4 @ > - 4 @ >

Charm meson leptonic and semileptonic decays at BE

November 2, 2019 7 / 24

3

Comparison of $\left|V_{cd}\right|$ and f_{D^+}

Inputs:

PDG2018 from CKM unitarity: $|V_{cd}| = 0.22438 \pm 0.00044$

LQCD average:

 $f_{D\pm}^{LQCD} = 212.3 \pm 0.6 \text{ MeV}$

 $f_{\pm}^{D \to \pi}(0)^{\text{LQCD}} = 0.634 \pm 0.015$

Charm meson leptonic and semileptonic decays at BE

 $D^0 \to K^-(\pi^-) e^+ \nu_e$

$\mathcal{B}(D^0 \to K^- e^+ \nu_e)$	$(3.505 \pm 0.014 \pm 0.033)\%$	$f_+^{D \to K}(0) V_{cs} $	$0.7172 \pm 0.0025 \pm 0.0035$
$\mathcal{B}(D^0 \to \pi^- e^+ \nu_e)$	$(0.295 \pm 0.004 \pm 0.003)\%$	$f_+^{D \to \pi}(0) V_{cd} $	$0.1435 \pm 0.0018 \pm 0.0009$

BESIII

Charm meson leptonic and semileptonic decays at BE

November 2, 2019 9 / 24

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

$\mathcal{B}(D^+ \to \bar{K}^0 e^+ \nu_e)$ (via K_c^0)	$(8.60 \pm 0.06 \pm 0.15)\%$		
$f_{+}^{D \to K}(0) V_{cs} $	$0.7053 \pm 0.0040 \pm 0.0112$		
$\mathcal{B}(D^+ \to \bar{\pi}^0 e^+ \nu_e)$	$(0.363 \pm 0.008 \pm 0.005)\%$		
$f_{+}^{D \to \pi}(0) V_{cd} $	$0.1400 {\pm} 0.0026 {\pm} 0.0007$		
$\mathcal{B}(D^+ \to \bar{K}^0 e^+ \nu_e) \text{ (via } K^0_L \text{)}$	$(8.962 \pm 0.054 \pm 0.206)\%$		
$f_{+}^{D \to K}(0) V_{cs} $	$0.728 {\pm} 0.006 {\pm} 0.011$		

$D \to \bar{K} \mu^+ \nu_\mu$

 $D \to \pi \mu^+ \nu_\mu$

$$\mathcal{B}(D^0 \to \pi^- \mu^+ \nu_\mu) = (0.272 \pm 0.008 \pm 0.006)\%$$
$$\mathcal{B}(D^+ \to \pi^0 \mu^+ \nu_\mu) = (0.350 \pm 0.011 \pm 0.010)\%$$
$$\frac{\Gamma(D^0 \to \pi^- \mu^+ \nu_\mu)}{\Gamma(D^0 \to \pi^- e^+ \nu_e)} = 0.922 \pm 0.037$$
$$\frac{\Gamma(D^+ \to \pi^0 \mu^+ \nu_\mu)}{\Gamma(D^+ \to \pi^0 e^+ \nu_e)} = 0.964 \pm 0.045$$

The LQCD calculations are taken from ETM's results published in PRD96(2017)054514, with

$$\frac{\Gamma(D \to \pi \mu^+ \nu_\mu)}{\Gamma(D \to \pi e^+ \nu_e)} = 0.985 \pm 0.002$$

-

3

Comparison of $f^{D \to K}_+(0)$ and $f^{D \to \pi}_+(0)$

Inputs: PDG2018 from CKM unitarity:

 $|V_{cs}| = 0.97359^{+0.00010}_{-0.00011}$

 $|V_{cd}| = 0.22438 \pm 0.00044$

Charm meson leptonic and semileptonic decays at BE N

November 2, 2019 13 / 24

 $D_s^+ \to \eta^{(\prime)} e^+ \nu_e$

Model independent determination of $\eta - \eta'$ mixing angle. $\frac{\Gamma(D_s^+ \to \eta' e^+ \nu_e) / \Gamma(D_s^+ \to \eta e^+ \nu_e)}{\Gamma(D^+ \to \eta' e^+ \nu_e) / \Gamma(D^+ \to \eta e^+ \nu_e)} \simeq \cot^4 \Phi_P$

 $\Phi_P = (40.1 \pm 2.1 \pm 0.7)^{\circ}$

Charm meson leptonic and semileptonic decays at BE

November 2, 2019 15 / 24

 $D^+ \rightarrow K^- \pi^+ e^+ \nu_e$

 $r_V = V(0)/A_1(0) = 1.411 \pm 0.058 \pm 0.007$ $r_2 = A_2(0)/A_1(0) = 0.788 \pm 0.042 \pm 0.008$ $A_1(0) = 0.589 \pm 0.010 \pm 0.012$

Not included in the nominal fit:

$$\begin{split} \mathcal{B}(D^+ \to \bar{K}^*(1410)^0 e^+ \nu_e) & (0 \pm 0.009 \pm 0.008)\% \\ < 0.028\% \ (90\% \ \text{C.L.}) \\ \mathcal{B}(D^+ \to \bar{K}^*_2(1430)^0 e^+ \nu_e) & (0.011 \pm 0.003 \pm 0.007)\% \\ < 0.023\% \ (90\% \ \text{C.L.}) \end{split}$$

$P(\bar{K}^*(892)^0)$		Simple Pole plus BW with mass-dependent width	(3.54	$\pm 0.03 \pm 0.08)\%$	
${\sf S}(ar{K}^*_0(1430)^0$ and non-res	ionant part)	LASS plus BW with mass-dependent width	(0.228	$\pm 0.008 \pm 0.008)\%$	
		-		(《문》(문) 문	୍
BESIII	Charm meson	leptonic and semileptonic decays	at BE	November 2, 2019	16 / 24

$D^0 \rightarrow \bar{K}^0 \pi^- e^+ \nu_e$ and $D^+ \rightarrow \omega e^+ \nu_e$

Charm meson leptonic and semileptonic decays at BE November 2, 2019

$D \to \pi \pi e^+ \nu_e$

$$D_s^+ \to K^{(*)0} e^+ \nu_e$$

$$\begin{split} &\mathcal{B}(D_s^+ \to K^0 e^+ \nu_e) = (3.25 \pm 0.38 \pm 0.16) \times 10^{-3} \\ &f_+^{D_s^+ \to K^0}(0) |V_{cd}| = 0.162 \pm 0.019 \pm 0.003 \\ &\mathcal{B}(D_s^+ \to K^0 e^+ \nu_e) = (2.37 \pm 0.26 \pm 0.20) \times 10^{-3} \\ &r_V = 1.67 \pm 0.34 \pm 0.16 \\ &r_2 = 0.77 \pm 0.28 \pm 0.07 \end{split}$$

$$\begin{split} f_{+}^{D_{s}^{+} \to K^{0}}(0) / f_{+}^{D^{+} \to \pi^{0}}(0) &= 1.16 \pm 0.14 \pm 0.02 \\ r_{V}^{D_{s}^{+} \to K^{*0}} / r_{V}^{D^{+} \to \rho^{0}} &= 1.13 \pm 0.26 \pm 0.11 \\ r_{2}^{D_{s}^{+} \to K^{*0}} / r_{2}^{D^{+} \to \rho^{0}} &= 0.93 \pm 0.36 \pm 0.10 \end{split}$$

Agrees with U-spin $(d \leftrightarrow s)$ symmetry.

< 17 ▶

Charm meson leptonic and semileptonic decays at BE

3

Comparison of r_V and r_2 with theoretical calculations

BESIII

Charm meson leptonic and semileptonic decays at BE

$D \rightarrow a_0(980) e^+ \nu_e$

BESII PRL121(2018)081802

A model-independent way to study the nature of light scalar mesons proposed by PRD82(2016)034016

$$R = \frac{\mathcal{B}(D^+ \to f_0(980)e^+\nu_e) + \mathcal{B}(D^+ \to f_0(500)e^+\nu_e)}{\mathcal{B}(D^+ \to a_0(980)^0e^+\nu_e)}$$

 $R=1.0\pm0.3$ for two-quark description; $R=3.0\pm0.9$ for tetraquark description.

We have R>2.7 @90% C.L. at BESIII Which favors the tetraquark description.

Decay	BF ($\times 10^{-4}$)	Significance
$D^0 \to a_0(980)^- e^+ \nu_e, a_0(980)^- \to \eta \pi^-$	$1.33^{+0.33}_{-0.29} \pm 0.09$	6.4σ
$D^+ \to a_0(980)^0 e^+ \nu_e, a_0(980)^0 \to \eta \pi^0$	$1.66^{+0.81}_{-0.66} \pm 0.11$ < 3.0 (90% C.L.)	2.9σ

$D^+ \to \bar{K}_1(1270)^0 e^+ \nu_e$

- First observation of D meson semileptonic decay into axial-vector mesons.
- Provide insight into the mixing angle of ${}^{1}P_{1}$ and ${}^{3}P_{1}$ states $\theta_{K_{1}}$.
- Test various theoretical calculations.
- Provide important input to study the photon polarisation in $B \to K_1 \gamma$ by measuring the ration of up-down asymmetries of θ_K and θ_l (more statistics needed). (See Dr. Zhen-Xing Zhao's talk)

 $\mathcal{B}(D^+ \to \bar{K}_1(1270)^0 e^+ \nu_e) = (2.30 \pm 0.26 \pm 0.18 \pm 0.25) \times 10^{-3}$

The measured BF agrees with CLFQM and LCSR predictions when $\theta_{K_1} \sim 33^\circ$ or 57° and clearly rules out the case when setting θ_{K_1} negative.

BESIII

Charm meson leptonic and semileptonic decays at BE

November 2, 2019 22 / 24

$D \to \gamma e^+ \nu_e$

Not subject to helicity suppression. Only photon energy larger than 10 MeV are considered. The BFs are predicated to be

 $10^{-5} \rightarrow 10^{-3}$ in various models.

 $\mathcal{B}(D^+ \to \gamma e^+ \nu_e) < 3.0 \times 10^{-5}$ @90% C.L.

Summary

- Precise measurement of decay constants, form factors and quark mixing matrix elements → precision improved with BESIII measurement.
- Lepton flavor universality test \rightarrow no evidence of violation found in the charm sector at the precision of 1.5% for CF decays and 4% for SCS decays..
- Study the nature of light scalar mesons \rightarrow tetraquark description favored with BESIII's results.
- First observation of *D* meson semileptonic decay to axias vector meson at BESIII.

Thanks for your attention!