Charmed Meson Hadronic decays at BESIII

Bai-Cian Ke Shanxi Normal University (On behalf of the BESIII collaboration)

Joint Workshop on Charmed Hadron Decays @ BESIII, BELLE, LHCb 2019 11/01-11/02/2019 SXNU, Linfen, China

Outline

Introduction

- \bullet D⁰, D⁺,and D_s dataset
- DTag and branching fraction
- Branching fraction measurement of D hadronic decays
- Amplitude analysis
 - K- π + π + π -, K_S π + π + π -, K- π + π ⁰ π ⁰, π + π ⁰ η etc.

• Summary

BESIII Data Taken near DDbar Threshold

- BEPCII collider: $e^+e^- \rightarrow \psi(3770) \rightarrow DD^{bar}$
- 2.9 fb⁻¹ dataset at $\psi(3770)$ resonance (~3.6x larger than CLEO's)

 M_{D0} = 1864.84 MeV M_{D+} = 1869.62 MeV

 $2M_{D0}$ = 3729.68 MeV $2M_{D+}$ = 3739.24 MeV

- 3.19 fb⁻¹ dataset at E_{cm} 4.178GeV (~5.3x larger than CLEO's)
 - D_s are produced mostly via $e^+e^- \rightarrow D_s D_s^*$
 - more energy points are ready (4.190, 4.200, 4.210, 4.220.4.230 GeV. Total are about 0.8x of 4.178 data.)
- Advantages of DD^{bar} pair production near threshold
 - The DD^{bar} events are clean; not enough energy for even one additional pion
 - Tagging reduces background from light-quark "continuum" and other charm final states
 - Double tag technique can provide access to absolute BFs
 - Many systematic uncertainties cancel with tagging technique

DTag Technique

- There are two types of samples used in the Dtag technique: single tag (ST) and double tag (DT).
- Single tag: only one D meson is reconstructed through a chosen hadronic decay.
- Double tag: both D and \overline{D} are reconstructed,
- the D reconstructed through the studied hadronic decay is called "the signal side".
- the D reconstructed through well-known and clean hadronic decay modes is called "the tag side".
- (Charge-conjugate states are implied throughout this talk.)

Observation of the Singly Cabibbo-Suppressed Decay $D^+ \rightarrow \omega \pi^+$ and Evidence for $D^0 \rightarrow \omega \pi^0$

Chose six (five) decay modes for $D^{+(0)}$.

In order to have a better solution for $D^{+(0)} \rightarrow \pi^+\pi^-\pi^0\pi^{+(0)}$ background, DT samples $D^{+(0)} \rightarrow \pi^+\pi^-\pi^0\pi^{+(0)}$ vs. tag modes are reconstructed first. Then fits to $\pi^+\pi^-\pi^0$ mass are performed.

Note that we are searching for $\omega \rightarrow \pi^+\pi^-\pi^0$.

$$\mathcal{B}_{\rm sig} = \frac{\sum_{\alpha} N_{\rm sig}^{\rm obs,\alpha}}{\sum_{\alpha} N_{\rm tag}^{\rm obs,\alpha} \epsilon_{\rm tag,sig}^{\alpha} / \epsilon_{\rm tag}^{\alpha}}$$

FIG. 1. $M_{\rm BC}$ distributions of ST samples for different tag modes. The first two rows show charged *D* decays: (a) $K^+\pi^-\pi^-$, (b) $K^+\pi^-\pi^-\pi^0$, (c) $K_S^0\pi^-$, (d) $K_S^0\pi^-\pi^0$, (e) $K_S^0\pi^+\pi^-\pi^-$, (f) $K^+K^-\pi^-$, the latter two rows show neutral *D* decays: (g) $K^+\pi^-$, (h) $K^+\pi^-\pi^0$, (i) $K^+\pi^-\pi^+\pi^-$, (j) $K^+\pi^-\pi^0\pi^0$, (k) $K^+\pi^-\pi^+\pi^-\pi^0$. Data are shown as points, the (red) solid lines are the total fits and the (blue) dashed lines are the background shapes. *D* and \overline{D} candidates are combined.

DT $D^{+(0)} \rightarrow \pi^+\pi^-\pi^0\pi^{+(0)}$ vs. tag modes

Fits to M3 π distributions of signal and sideband regions to obtain the signal and peaking background yields, respectively.

 $N^{\rm bkg}_{\omega(\eta)}$

 21 ± 4

 5 ± 5

 6 ± 2

 3 ± 2

 $N_{\rm sig}^{\rm obs}$

 79 ± 16

 45 ± 13

 258 ± 18

 75 ± 10

Previous measurements

 $(3.53\pm0.21)\times10^{-3}$

 $(0.68\pm0.07)\times10^{-3}$

Events counts in sidebands are projected into the signal region with scale factors.

Measurements of pure W-annihilation decays in Ds+

This measurement of implies the $\rho-\omega$ mixing is negligible.

Amplitude Analysis of $D_{(s)}$ three- and four-body decays

Amplitude Analysis of Kπππ

•There are seven $D \rightarrow K\pi\pi\pi$ modes:

- $D^0 \rightarrow K^-\pi^+\pi^+\pi^-$ (published on PRD)
- $D^0 \rightarrow K^-\pi^+\pi^0\pi^0$ (published on PRD)
- $D^0 {\rightarrow} \ K_S \pi^0 \pi^0 \pi^0$
- $D^0 \rightarrow K_S \pi^+ \pi^- \pi^0$ (on-going)
- $D^+ \rightarrow K^- \pi^+ \pi^+ \pi^0$ (on-going)
- $D^+ {\rightarrow} \ K_S \pi^+ \pi^0 \pi^0 \ (on\ -going)$

Four-body decays are in five-dimensions

•We have

- Partial Wave Analysis Tools based on CPU and GPU kernel
- Great Electro-Magnetic Calorimeter (EMC) with CsI
 - \rightarrow superior resolution and efficiency of $\pi^{_0}$
- Largest dataset at $\psi(3770)$ resonance
 - \rightarrow small statistical errors and clean background

Amplitude Analysis Results of $D^0 \rightarrow K^-\pi^+\pi^+\pi^-$

Fit fraction (%)Amplitude ϕ_i $D^0[S] \to \bar{K}^* \rho^0$ $6.5 \pm 0.5 \pm 0.8$ $2.35 \pm 0.06 \pm 0.18$ $D^0[P] \to \bar{K}^* \rho^0$ $-2.25 \pm 0.08 \pm 0.15$ $2.3 \pm 0.2 \pm 0.1$ $D^0[D] \to \bar{K}^* \rho^0$ $2.49 \pm 0.06 \pm 0.11$ $7.9 \pm 0.4 \pm 0.7$ $D^0 \to K^- a_1^+(1260), a_1^+(1260)[S] \to \rho^0 \pi^+$ 0(fixed) $53.2 \pm 2.8 \pm 4.0$ $D^0 \to K^- a_1^+(1260), a_1^+(1260)[D] \to \rho^0 \pi^+$ $-2.11 \pm 0.15 \pm 0.21$ $0.3 \pm 0.1 \pm 0.1$ $D^0 \to K_1^-(1270)\pi^+, K_1^-(1270)[S] \to \bar{K}^{*0}\pi^ 1.48 \pm 0.21 \pm 0.24$ $0.1 \pm 0.1 \pm 0.1$ $D^0 \to K_1^-(1270)\pi^+, K_1^-(1270)[D] \to \bar{K}^{*0}\pi^ 3.00 \pm 0.09 \pm 0.15$ $0.7 \pm 0.2 \pm 0.2$ $D^0 \to K_1^-(1270)\pi^+, K_1^-(1270) \to K^-\rho^0$ $-2.46 \pm 0.06 \pm 0.21$ $3.4 \pm 0.3 \pm 0.5$ $D^0 \to (\rho^0 K^-)_A \pi^+, (\rho^0 K^-)_A [D] \to K^- \rho^0$ $-0.43 \pm 0.09 \pm 0.12$ $1.1 \pm 0.2 \pm 0.3$ $D^0 \rightarrow (K^- \rho^0)_{\rm P} \pi^+$ $-0.14 \pm 0.11 \pm 0.10$ $7.4 \pm 1.6 \pm 5.7$ $D^0 \rightarrow (K^- \pi^+)_{\rm S} \rho^0$ $-2.45 \pm 0.19 \pm 0.47$ $2.0 \pm 0.7 \pm 1.9$ $D^0 \rightarrow (K^- \rho^0)_V \pi^+$ $-1.34 \pm 0.12 \pm 0.09$ $0.4 \pm 0.1 \pm 0.1$ $D^0 \to (\bar{K}^{*0}\pi^-)_{\rm P}\pi^+$ $-2.09 \pm 0.12 \pm 0.22$ $2.4 \pm 0.5 \pm 0.5$ $D^0 \to \bar{K}^{*0}(\pi^+\pi^-)_{\rm S}$ $-0.17 \pm 0.11 \pm 0.12$ $2.6 \pm 0.6 \pm 0.6$ $D^0 \to (\bar{K}^{*0}\pi^-)_V \pi^+$ $-2.13 \pm 0.10 \pm 0.11$ $0.8 \pm 0.1 \pm 0.1$ $D^0 \to ((K^-\pi^+)_{\rm S}\pi^-)_{\rm A}\pi^+$ $-1.36 \pm 0.08 \pm 0.37$ $5.6 \pm 0.9 \pm 2.7$ $D^0 \to K^-((\pi^+\pi^-)_{\rm S}\pi^+)_{\rm A}$ $-2.23 \pm 0.08 \pm 0.22$ $13.1 \pm 1.9 \pm 2.2$ $D^0 \to (K^-\pi^+)_{\rm S}(\pi^+\pi^-)_{\rm S}$ $-1.40 \pm 0.04 \pm 0.22$ $16.3 \pm 0.5 \pm 0.6$ $D^{0}[S] \to (K^{-}\pi^{+})_{V}(\pi^{+}\pi^{-})_{V}$ $1.59 \pm 0.13 \pm 0.41$ $5.4 \pm 1.2 \pm 1.9$ $D^0 \to (K^- \pi^+)_{\rm S} (\pi^+ \pi^-)_{\rm V}$ $-0.16 \pm 0.17 \pm 0.43$ $1.9 \pm 0.6 \pm 1.2$ $D^0 \to (K^- \pi^+)_V (\pi^+ \pi^-)_S$ $2.58 \pm 0.08 \pm 0.25$ $2.9 \pm 0.5 \pm 1.7$ $D^0 \to (K^- \pi^+)_{\rm T} (\pi^+ \pi^-)_{\rm S}$

 $-2.92 \pm 0.14 \pm 0.12$

 $2.45 \pm 0.12 \pm 0.37$

 $0.3 \pm 0.1 \pm 0.1$

 $0.5\pm0.1\pm0.1$

Double tag $D^0 \rightarrow K^-\pi^+\pi^-\nu s$. $D^0 \rightarrow K^+\pi^-$

 $D^0 \to (K^- \pi^+)_{\rm S} (\pi^+ \pi^-)_{\rm T}$

Amplitude Analysis Results of $D^0 \rightarrow K^-\pi^+\pi^+\pi^-$

 $D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$

 $7.0\pm0.4\pm0.3$

 $21.9 \pm 0.6 \pm 0.6$

Published in PRD 95, 072010

Amplitude Analysis Results of $D^0 \rightarrow K^-\pi^+\pi^0\pi^0$

Double tag: $D^0 \rightarrow K^-\pi^+\pi^0\pi^0$ (signal) vs. $\overline{D}^0 \rightarrow K^+\pi^-$ (tag) The number of event selected is 5950 with a purity of ~99% The data can be described with 26 amplitudes:

Amplitude mode	FF (%)	Phase (ϕ)
$\overline{D \to SS}$		
$D \to (K^- \pi^+)_{S-\text{wave}} (\pi^0 \pi^0)_S$	$6.92 \pm 1.44 \pm 2.86$	$-0.75 \pm 0.15 \pm 0.47$
$D \rightarrow (K^- \pi^0)_{S-\text{wave}} (\pi^+ \pi^0)_S$	$4.18 \pm 1.02 \pm 1.77$	$-2.90 \pm 0.19 \pm 0.47$
$D \to AP, A \to VP$		
$D \to K^- a_1(1260)^+, \rho^+ \pi^0[S]$	$28.36 \pm 2.50 \pm 3.53$	0 (fixed)
$D \to K^- a_1(1260)^+, \rho^+ \pi^0[D]$	$0.68 \pm 0.29 \pm 0.30$	$-2.05 \pm 0.17 \pm 0.25$
$D \to K_1(1270)^- \pi^+, K^{*-} \pi^0[S]$	$0.15 \pm 0.09 \pm 0.18$	$1.84 \pm 0.34 \pm 0.43$
$D o K_1(1270)^0 \pi^0, K^{*0} \pi^0[S]$	$0.39 \pm 0.18 \pm 0.30$	$-1.55 \pm 0.20 \pm 0.26$
$D \to K_1(1270)^0 \pi^0, K^{*0} \pi^0[D]$	$0.11 \pm 0.11 \pm 0.13$	$-1.35 \pm 0.43 \pm 0.48$
$D o K_1(1270)^0 \pi^0, K^- ho^+[S]$	$2.71 \pm 0.38 \pm 0.29$	$-2.07 \pm 0.09 \pm 0.20$
$D \to (K^{*-}\pi^0)_A \pi^+, K^{*-}\pi^0[S]$	$1.85 \pm 0.62 \pm 1.11$	$1.93 \pm 0.10 \pm 0.15$
$D o (K^{*0}\pi^0)_A\pi^0, K^{*0}\pi^0[S]$	$3.13 \pm 0.45 \pm 0.58$	$0.44 \pm 0.12 \pm 0.21$
$D o (K^{*0}\pi^0)_A\pi^0, K^{*0}\pi^0[D]$	$0.46 \pm 0.17 \pm 0.29$	$-1.84 \pm 0.26 \pm 0.42$
$D ightarrow(ho^+K^-)_A\pi^0, K^- ho^+[D]$	$0.75 \pm 0.40 \pm 0.60$	$0.64 \pm 0.36 \pm 0.53$
$D \to AP, A \to SP$		
$D ightarrow ((K^-\pi^+)_{S ext{-wave}}\pi^0)_A \pi^0$	$1.99 \pm 1.08 \pm 1.55$	$-0.02 \pm 0.25 \pm 0.53$
$D \rightarrow VS$		
$D ightarrow (K^- \pi^0)_{S ext{-wave}} ho^+$	$14.63 \pm 1.70 \pm 2.41$	$-2.39 \pm 0.11 \pm 0.35$
$D ightarrow K^{*-}(\pi^+\pi^0)_S$	$0.80 \pm 0.38 \pm 0.26$	$1.59 \pm 0.19 \pm 0.24$
$D ightarrow K^{*0}(\pi^0\pi^0)_S$	$0.12 \pm 0.27 \pm 0.27$	$1.45 \pm 0.48 \pm 0.51$
$D \to VP, V \to VP$		
$D ightarrow (K^{*-}\pi^+)_V \pi^0$	$2.25 \pm 0.43 \pm 0.45$	$0.52 \pm 0.12 \pm 0.17$
$D \rightarrow VV$		
$D[S] \to K^{*-} \rho^+$	$5.15 \pm 0.75 \pm 1.28$	$1.24 \pm 0.11 \pm 0.23$
$D[P] \rightarrow K^{*-} \rho^+$	$3.25 \pm 0.55 \pm 0.41$	$-2.89 \pm 0.10 \pm 0.18$
$D[D] \rightarrow K^{*-} \rho^+$	$10.90 \pm 1.53 \pm 2.36$	$2.41 \pm 0.08 \pm 0.16$
$D[P] \rightarrow (K^- \pi^0)_V \rho^+$	$0.36 \pm 0.19 \pm 0.27$	$-0.94 \pm 0.19 \pm 0.28$
$D[D] ightarrow (K^- \pi^0)_V ho^+$	$2.13 \pm 0.56 \pm 0.92$	$-1.93 \pm 0.22 \pm 0.25$
$D[D] \to K^{*-} (\pi^+ \pi^0)_V$	$1.66 \pm 0.52 \pm 0.61$	$-1.17 \pm 0.20 \pm 0.39$
$D[S] \to (K^{-}\pi^{0})_{V}(\pi^{+}\pi^{0})_{V}$	$5.17 \pm 1.91 \pm 1.82$	$-1.74 \pm 0.20 \pm 0.31$
$D \rightarrow TS$		
$D \rightarrow (K^- \pi^+)_{S-\text{wave}} (\pi^0 \pi^0)_T$	$0.30 \pm 0.21 \pm 0.32$	$-2.93 \pm 0.31 \pm 0.82$
$\underline{D \to (K^- \pi^0)_{S\text{-wave}} (\pi^+ \pi^0)_T}$	$0.14 \pm 0.12 \pm 0.10$	$2.23 \pm 0.38 \pm 0.65$

Branching Fraction Results of $D^0 \rightarrow K^-\pi^+\pi^0\pi^0$

Double tag(DT) $D^0 \rightarrow K^-\pi^+\pi^0\pi^0$ vs. $\overline{D}^0 \rightarrow K^+\pi^-$ Single tag(ST) $\overline{D}^0 \rightarrow K^+\pi^-$

The amplitude analysis result is used to determine the detection efficiency, where the DT efficiency is 8.39%

The branching fraction is determined to be

$$(8.86 \pm 0.13(\text{stat}) \pm 0.19(\text{syst}))\%$$

Phys. Rev. D 99, 092008 (2019)

Amplitude Analysis of $D^+ \rightarrow K_S \pi^+ \pi^+ \pi^-$

Double tag $D^+ \rightarrow K_S \pi^+ \pi^+ \pi^- vs. D^- \rightarrow K^+ \pi^- \pi^-$ The number of event selected is 4559 with a purity of ~99% The data can be described with 12 amplitudes:

Amplitude	ϕ	fit fraction
$D^+ \to K^0_S a_1(1260)^+, a_1(1260)^+ \to \rho^0 \pi^+[S]$	0.000(fixed)	$0.567 \pm 0.020 \pm 0.044$
$D^+ \to K_S^0 a_1(1260)^+, a_1(1260)^+ \to f_0(500)\pi^+$	$-2.023 \pm 0.068 \pm 0.113$	$0.050 \pm 0.006 \pm 0.007$
$D^+ \to \bar{K}_1(1400)^0 \pi^+, \bar{K}_1(1400)^0 \to K^{*-} \pi^+[S]$	$-2.714 \pm 0.038 \pm 0.051$	$0.380 \pm 0.013 \pm 0.014$
$D^+ \to \bar{K}_1(1400)^0 \pi^+, \bar{K}_1(1400)^0 \to K^{*-} \pi^+[D]$	$3.431 \pm 0.137 \pm 0.117$	$0.015 \pm 0.004 \pm 0.005$
$D^+ \to \bar{K}_1(1270)^0 \pi^+, \bar{K}_1(1270)^0 \to K^0_S \rho^0[S]$	$-0.418 \pm 0.070 \pm 0.087$	$0.036 \pm 0.004 \pm 0.002$
$D^+ \to \bar{K}(1460)^0 \pi^+, \bar{K}(1460)^0 \to K^0_S \rho^0$	$-1.850 \pm 0.120 \pm 0.223$	$0.014 \pm 0.004 \pm 0.003$
$D^+ \to (K^0_S \rho^0)_A [D] \pi^+$	$2.328 \pm 0.097 \pm 0.068$	$0.011 \pm 0.003 \pm 0.002$
$D^+ \to K^0_S(\rho^0 \pi^+)_P$	$1.656 \pm 0.083 \pm 0.056$	$0.031 \pm 0.004 \pm 0.010$
$D^+ \to (K^{*-}\pi^+)_A[S]\pi^+$	$-4.321 \pm 0.047 \pm 0.073$	$0.132 \pm 0.011 \pm 0.011$
$D^+ \to (K^{*-}\pi^+)_A[D]\pi^+$	$0.989 \pm 0.158 \pm 0.229$	$0.013 \pm 0.004 \pm 0.004$
$D^+ \to (K^0_S(\pi^+\pi^-)_S)_A\pi^+$	$-2.935 \pm 0.060 \pm 0.125$	$0.051 \pm 0.004 \pm 0.003$
$D^+ \to ((K_S^0 \pi^-)_S \pi^+)_P \pi^+$	$1.864 \pm 0.069 \pm 0.288$	$0.022 \pm 0.003 \pm 0.003$

Amplitude Analysis of $D^+ \rightarrow K_S \pi^+ \pi^+ \pi^-$

Amplitude Analysis of $D^+ \rightarrow K_S \pi^+ \pi^+ \pi^-$

The preliminary results of branching fractions for different components :

The measurements of the decays with K1(1270) and K1(1400) involved provide some experimental information in understanding the mixture of the two excited Kaons.

Phys. Rev. D **100**, 072008 (2019) 16

Amplitude Analysis of $D_{S^+} \rightarrow \pi^+\pi^0\eta$ Observation of $D_{S^+} \rightarrow a^0(980)^+\pi^0$

Dots with error bar: data Solid line: total fit Dashed line: rho+ eta Lond-dashed line: a0(980)π

The phase difference between $a_0(980)^0\pi^+$ and $a_0(980)^+\pi^0$ is found to agree with 180°

Amplitude Analysis of $D_{S^+} \rightarrow \pi^+\pi^0\eta$

annihilation decays ($D_{S^+} \rightarrow pn$, $D_{S^+} \rightarrow w\pi^+$) by one order.

Phys. Rev. Lett. **123**, 112001 (2019)

Summary

- DTag and DD^{bar} threshold data allows us to perform inclusive and exclusive branching fraction measurement
- Double tag provides clean samples for amplitude analysis
- Many D⁰ and D⁺ studies have been published, including strong phase and y_{cp} measurements, and more related measurements are on-going
- Excellent D_s studies are published based on our 3.19 fb⁻¹ data at $E_{cm} = 4.178$ GeV (and at 4.190-4.230 GeV)
 - "Many" D_s amplitude analyses of three- and four-body decays are expected to be published in the next year.