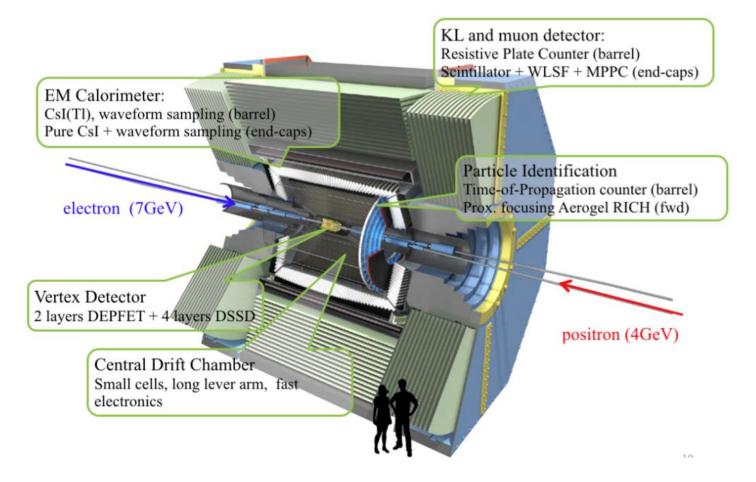
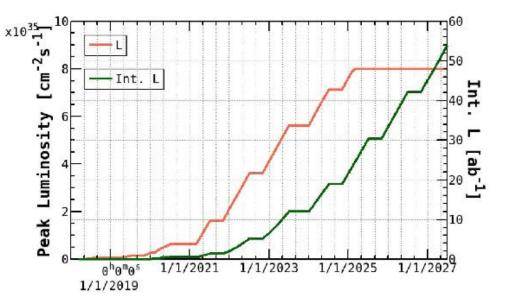

Prospect of charm physics at Belle II


鄢文标 (中国科学技术大学)

- Introduction: SuperKEKB and Belle II
 Introduction: D⁰-D
 ⁰ mixing and CP violation
- D^0/\overline{D}^0 tag and performance with D^0 at Belle II
- D⁰-D⁰ mixing and CP violation at Belle II
- Time-integrated CP asymmetry A_{CP} at Belle II
- "Joint Workshop on Charmed Hadron Decays @ BESIII, Belle, LHCb", 2019.11.02, 临汾

The SuperKEKB accelerator

Belle II detector


• Phase III @ Belle II: Physics run already started in 2019

Belle II data

Submitted to Chinese Physics C

Measurement of the integrated luminosity of the Phase 2 data of the Belle II experiment

F. Abudinén,³⁹ I. Adachi,^{18,16} P. Ahlburg,⁹⁹ H. Aihara,¹¹⁶ N. Akopov,¹²² A. Aloisio,^{88,32} L. Andricek,⁵⁶ N. Anh Ky,²⁹ D. M. Asner,² H. Atmacan,¹⁰¹ T. Aushev,⁵⁸ V. Aushev,⁷⁹ K. Azmi,¹⁰⁷ V. Babu,⁸ S. Bachr,⁴³ S. Bahinipati,²¹ A. M. Bakich,¹¹⁵ P. Bambade,⁴⁹ Sw. Banerjee,¹⁰⁶ S. Bansal,⁷¹ V. Bansal,⁷⁰ M. Barrett,¹⁸ J. Baudot,⁹⁷ A. Beaulieu,¹¹⁸ J. Becker,⁴³ P. K. Behera,²³ J. V. Bennett,¹¹⁰ E. Bernieri,³⁷ F. U. Bernlochner,⁴³ M. Bertemes,²⁶ M. Bessner,¹⁰³ S. Bettarini,^{92,35} V. Bhardwaj,²⁰ F. Bianchi,^{94,38} T. Bilka,⁵ S. Bilokin,⁹⁷ D. Biswas,¹⁰⁶ G. Bonvicini,¹²⁰ A. Bozek,⁶⁴ M. Bračko^{108,78} P. Branchini,³⁷ N. Braun,⁴³ T. E. Browder,¹⁰³ A. Budano,³⁷ S. Bussino,^{93,37} M. Campajola,^{88,32} L. Cao,⁴³ G. Casarosa,^{92,35} C. Cecchi,^{91,34} D. Červenkov,⁵ M.-C. Chang,¹² P. Chang,⁶³ R. Cheaib,¹⁰⁰ V. Chekelian,⁵⁵ Y. Q. Chen,¹¹² Y.-T. Chen,⁶³ B. G. Cheon,¹⁷ K. Chilikin,⁵⁰ H.-E. Cho,¹⁷ K. Cho,⁴⁵ S. Choudhury,²² D. Cinabro,¹²⁰ L. Corona,^{92,35} L. M. Cremaldi,¹¹⁰ S. Cunliffe,⁸ T. Czank,¹¹⁷ F. Dattola,⁸ E. De La Cruz-Burelo,⁴ G. De Nardo,^{88,32} M. De Nuccio,⁸ G. De Pietro,^{93,37} R. de Sangro,³¹ M. Destefanis,^{94,38} S. Dey,⁸² A. De Yta-Hernandez,⁴ F. Di Capua,^{88,32} S. Di Carlo, J. Dingfelder,⁹⁹ Z. Doležal,⁵ I. Domínguez Jiménez,⁸⁷ T. V. Dong,¹³ K. Dort,⁴² S. Dubey,¹⁰³ S. Duell,⁹⁹ S. Eidelman,^{3,66,50} M. Eliachevitch,⁴³ T. Ferber,⁸ D. Ferlewicz,¹⁰⁹ G. Finocchiaro,³¹ S. Fiore,³⁶ A. Fodor,⁵⁷ F. Forti,^{92,35} A. Frey,¹⁴ B. G. Fulsom,⁷⁰ M. Gabriel,⁵⁵ E. Ganiev,^{95,39} M. Garcia-Hernandez,⁴ A. Garmash,^{3,66} V. Gaur,¹¹⁹ A. Gaz,⁶¹ U. Gebauer,¹⁴ A. Gellrich,⁸ J. Gemmler,⁴³ T. Geßler,⁴² R. Giordano,^{88,32} A. Giri,²² B. Gobbo,³⁹ R. Godang,¹¹³ P. Goldenzweig,⁴³ B. Golob,^{105,78} P. Gomis,³⁰ P. Grace,⁹⁸ W. Gradl,⁴¹ E. Graziani,³⁷ D. Greenwald,⁸¹ C. Hadjivasiliou,⁷⁰ S. Halder,⁸⁰ K. Hara,^{18,16} T. Hara,^{18,16} K. Hayasaka,⁶⁵ H. Hayashii,⁶² C. Hearty,^{100,28} I. Heredia de la Cruz,^{4,7} M. Hernández Villanueva,¹¹⁰ A. Hershenhorn,¹⁰⁰ T. Higuchi,¹¹⁷ H. Hirata,⁶⁰ M. Hoek,⁴¹ S. Hollitt,⁹⁸ T. Hotta,⁶⁹ M. nernanocz vinanucy, A. nersnemorn, I. Inguch, I. Inrata, M. nock, S. nonut, I. nota, C.-L. Hsu,¹¹⁵ Y. Hu,⁷⁵ K. Huag,⁶³ T. Iijima,^{66,61} K. Inami,⁶⁰ G. Inguglia,⁵⁶ J. Irakkathil Jabbar,⁴³ A. Ishikawa,^{18,16} R. Itoh,^{18,16} M. Iwasaki,⁶⁸ Y. Iwasaki,¹⁸ S. Iwata,⁸⁶ P. Jackson,⁹⁸ W. W. Jacobs,²⁴ D. E. Jaffe,² S. Jia,¹ Y. Jin,³⁹ C. Joo,¹¹⁷ J. Kahn,⁴³ H. Kakuno,⁸⁶ G. Karyan,¹²² Y. Kato,⁶¹ T. Kawasaki,⁴⁴ H. Kichimi,¹⁸ C. Kiesling,⁵⁵ B. H. Kim,⁷⁵ C.-H. Kim,¹⁷ D. Y. Kim, ⁷⁷ Y. K. Kim, ¹²³ T. D. Kimmel, ¹¹⁹ K. Kinoshita, ¹⁰¹ C. Kleinwort, ⁸ B. Knysh, ⁴⁹ P. Kodyš, ⁵ T. Koga, ¹⁸ D. I. Kuni, T. K. Kuli, T. D. Kulini, K. Kubana, K. Kubana, G. Kushawa, D. Kujawa, T. Korga, T. Korga, T. Korga, K. Kubana, S. Kubana, S. P. Križan, ^{105,78} R. Kroveger, ¹¹⁰ J. F. Krohn, ¹⁰⁹ P. Krokovny, ^{3,66} W. Kuehn, ⁴² T. Kuhr, ⁵² M. Kumar, ⁵⁴ R. Kumar, ⁷³ K. Kumara, ¹²⁰ S. Kurz, ⁸ A. Kuzmin, ^{3,66} Y.-J. Kwon, ¹²³ S. Lacaprara, ³³ Y.-T. Lai, ¹⁸ C. La Licata, ¹¹⁷ K. Lalwani, ⁵⁴ L. Lanceri, ³⁹ J. S. Lange, ⁴² R. Kuzmin, ^{3,66} Y.-J. Kwon, ¹²³ S. Kurz, ⁸ A. Kuzmin, ^{3,66} Y.-J. Kwon, ¹²³ S. Lacaprara, ³³ Y.-T. Lai, ¹⁸ C. La Licata, ¹¹⁷ K. Lalwani, ⁵⁴ L. Lanceri, ³⁹ J. S. Lange, ⁴² R. Kuzmin, ³⁶ Y.-J. Kwon, ¹²³ S. Kurz, ⁸ R. Kuzmin, ³⁶ Y.-J. Kwon, ¹²³ S. Kurz, ⁸ R. Kuzmin, ³⁶ Y.-J. Kwon, ¹²⁴ S. Kurz, ⁸ R. Kuzmin, ³⁶ Y.-J. Kwon, ¹²⁵ S. Kurz, ⁸ R. Kuzmin, ³⁶ Y.-J. Kwon, ¹²⁵ S. Kurz, ⁸ R. Kuzmin, ³⁶ Y.-J. Kwon, ¹²⁵ S. Kurz, ⁸ R. Kuzmin, ³⁶ Y.-J. Kwon, ¹²⁵ S. Kurz, ⁸ R. Kuzmin, ³⁶ Y.-J. Kwon, ¹²⁶ S. Kurz, ⁸ R. Kuzmin, ³⁶ Y.-J. Kwon, ¹²⁶ S. Kurz, ⁸ R. Kuzmin, ³⁶ Y.-J. Kwon, ¹²⁶ S. Kurz, ⁸ R. Kuzmin, ³⁶ Y.-J. Kwon, ¹²⁶ S. Kurz, ⁸ R. Kuzmin, ³⁶ Y.-J. Kwon, ¹²⁶ S. Kurz, ⁸ R. Kuzmin, ³⁶ Y.-J. Kwon, ¹²⁶ S. Kurz, ⁸ R. Kuzmin, ³⁶ Y.-J. Kwon, ¹²⁷ S. Kurz, ⁸ R. Kuzmin, ³⁶ Y.-J. Kwon, ¹²⁸ S. Kurz, ⁸ R. Kuzmin, ³⁶ Y.-J. Kwon, ¹²⁸ S. Kurz, ⁸ R. Kuzmin, ³⁶ Y.-J. Kwon, ¹²⁸ S. Kurz, ⁸ R. Kuzmin, ³⁶ Y.-J. Kwon, ¹²⁸ S. Kurz, ⁸ R. Kuzmin, ³⁶ Y.-J. Kwon, ¹²⁸ Y.-J. Kwon, ¹²⁹ Y K. Lautenbach,⁴² I.-S. Lee,¹⁷ S. C. Lee,⁴⁸ P. Leitl,⁵⁵ D. Levit,⁸¹ P. M. Lewis,⁹⁹ C. Li,⁵¹ L. K. Li,²⁷ S. X. Li,¹ Y. B. Li,⁷² ¹³ J. Libby²³ K. Lieret, ⁵² L. Li Gioi, ⁵⁵ J. Lin, ⁶³ Z. Liptak, ¹⁰³ Q. Y. Liu, ¹³ D. Liventsev, ^{19,18} S. Longo, ¹¹⁸ A. Loos, ¹¹⁴ F. Luetticke, ⁹⁹ T. Luo, ¹³ C. MacQueen, ¹⁰⁹ Y. Maeda, ⁶¹ M. Maggiora, ^{94,38} S. Maity, ²¹ E. Manoni, ³⁴ S. Marcello, ^{94,38} C. Marinas,³⁰ A. Martini,^{93,37} M. Masuda,^{10,69} K. Matsuoka,⁶¹ D. Matvienko,^{3,66,50} J. McNeil,¹⁰² J. C. Mei,¹³ F. Meier,¹¹⁵ M. Merola,^{89,32} F. Metzner,⁴³ C. Miller,¹¹⁸ K. Miyabayashi,⁶² H. Miyata,⁶⁵ R. Mizuk,⁵⁰ G. B. Mohanty,⁸⁰ H. Moon,⁴⁶ T. Morii,¹¹⁷ F. J. Müller,⁸ R. Mussa,³⁸ K. R. Nakamura,^{18,16} E. Nakano,⁶⁸ M. Nakao,^{18,16} H. Nakayama,^{18,16} H. Nakazawa,⁶³ M. Nayak,⁸² G. Nazaryan,¹²² D. Neverov,⁶⁰ M. Niiyama,⁴⁷ N. K. Nisar,¹¹¹ S. Nishida,^{18,16} K. Nishimura,¹⁰³ M. Nishimura,¹⁸ M. H. A. Nouxman,¹⁰⁷ B. Oberhof,³¹ S. Ogawa,⁸³ Y. Onishchuk,⁷⁹ H. Ono,⁶⁵ H. Ozaki,^{18,16} P. Pakhlov,^{50,50} G. Pakhlova.^{58,50} A. Paladino,^{92,35} T. Pang,¹¹¹ E. Paoloni,^{92,35} H. Park,⁴⁸ S.-H. Park,¹²³ B. Paschen,⁹⁹ A. Passeri,³⁷ S. Patra,²⁰ S. Paul,⁸¹ T. K. Pedlar,⁵³ I. Peruzzi,³¹ R. Peschke,¹⁰³ R. Pestotnik,⁷⁸ M. Piccolo,³¹ L. E. Piilonen, P. L. M. Podesta-Lerma,⁸⁷ V. Popov,^{58,50} C. Praz,⁸ E. Prencipe,¹¹ M. T. Prim,⁴³ M. V. Purohit,⁶⁷ P. Rados,⁸ M. Remnev,^{5,66} P. K. Resmi,³³ I. Ripp-Baudot,⁹⁷ M. Ritter,⁵² M. Ritzert,¹⁰⁴ G. Rizzo,^{92,35} L. B. Rizzuto,⁷⁸ M. Rohmey, F. R. Reshi, T. Hipp-Daudot, M. RUCH, M. RUZH, G. RUZO, T. D. RUZHO,
 S. H. Robertson, ^{57,28} D. Rodríguez Pérez, ⁵⁷ J. M. Roney, ¹¹⁸ C. Rosenfeld, ¹¹⁴ A. Rostomyan,⁸ N. Ront, ²³ G. Russo, ^{88,32}
 D. Sahoo, ⁸⁰ Y. Sakai, ^{18,16} D. A. Sanders, ¹¹⁰ S. Sandijya, ¹⁰¹ A. Sangal, ¹⁰¹ L. Santelj, ^{105,78} Y. Sato, ⁸⁴ V. Savinov, ¹¹¹
 B. Scavino, ⁴¹ M. Schram, ⁷⁰ H. Schreeck, ¹⁴ J. Schueler, ¹⁰³ C. Schwanda, ²⁶ A. J. Schwartz, ¹⁰¹ B. Schwenker, ¹⁴ R. M. Seddon,⁵⁷ Y. Seino,⁶⁵ A. Selce,³⁴ K. Senyo,¹²¹ M. E. Sevior,¹⁰⁹ C. Sfienti,⁴¹ C. P. Shen,¹³ H. Shibuya,⁸³ J.-G. Shiu,⁶³ A. Sibidanov,¹¹⁸ F. Simon,⁵⁵ S. Skambraks,⁵⁵ R. J. Sobie,^{118,28} A. Soffer,⁸² A. Sokolov,²⁵ E. Solovieva,⁵⁰ S. Spataro,^{94,38} B. Spruck, ⁴¹ M. Starić, ⁷⁸ S. Stefkova, ⁸ Z. S. Stottler, ¹¹⁹ R. Stroili, ^{90,33} J. Strube, ⁷⁰ M. Sumihama, ^{15,69} T. Sumiyoshi, ⁸⁶ D. J. Sumiyoshi, ⁸⁶ M. Takizawa, ^{75,19,74} U. Tamponi, ³⁸ S. Tanaka, ^{18,16} K. Tanida, ⁴⁰ H. Tanigawa,¹¹⁶ N. Taniguchi,¹⁸ Y. Tao,¹⁰² P. Taras,⁹⁶ F. Tenchini,⁸ E. Torassa,³³ K. Trabelsi,⁴⁹ T. Tsuboyama,^{18,16} N. Tsuzuki,⁶⁰ M. Uchida,⁸⁵ I. Ueda,^{18,16} S. Uehara,^{18,16} T. Uglov,^{50,58} K. Unger,⁴³ Y. Unno,¹⁷ S. Uno,^{18,16} P. Urquijo,¹⁰⁹ Y. Ushiroda, ^{18,16,116} S. E. Vahsen, ¹⁰³ R. van Tonder, ⁴³ G. S. Varner, ¹⁰³ K. E. Varvell, ¹¹⁵ A. Vinokurova, ^{3,66} L. Vitale, ^{95,39} A. Vossen,⁹ E. Waheed,¹⁰⁹ H. M. Wakeling,⁵⁷ K. Wan,¹¹⁶ W. Wan Abdullah,¹⁰⁷ B. Wang,⁵⁵ M.-Z. Wang,⁶³ X. L. Wang,¹³ A. Warburton,⁵⁷ S. Watanuki,⁴⁹ J. Webb,¹⁰⁹ S. Wehle,⁸ N. Wermes,⁹⁹ J. Wiechczynski,³⁵ P. Wieduwilt,¹⁴ H. Windel,⁵⁵ E. Won,⁴⁶ S. Yamada,¹⁸ W. Yan,¹¹² S. B. Yang,⁴⁶ H. Ye,⁸ J. Yelton,¹⁰² J. H. Yin,²⁷ M. Yonenaga,⁸⁶ Y. M. Yook,²⁷ C. Z. Yuan,²⁷ Y. Yusa,⁶⁵ L. Zani,^{92,35} J. Z. Zhang,²⁷ Z. Zhang,¹¹² V. Zhilich,^{3,66} Q. D. Zhou,¹⁸ X. Y. Zhou,¹ V. I. Zhukova,⁵⁰ V. Zhulanov,^{3,66} A. Zupanc^{108,78} (Belle II Collaboration)

Belle II submitted first paper with phase II data Belle II plan to have 50 ab⁻¹ data

Charm meson data

Experiment	Machine	C.M \sqrt{s}	Luminosity	charm sample	efficiency
CLEOC	CESR (e^+e^-)	3.77 GeV	$0.8 \ \mathrm{fb}^{-1}$	$2.9 imes 10^6 (D^0) \ 2.3 imes 10^6 (D^+)$	
	(0.0.)	4.17 GeV	0.6 fb ⁻¹	$0.6 \times 10^6 (D_s^+)$	~10-30%
рсст	BEPC-II (e ⁺ e ⁻)	3.77 GeV	$2.9~{\rm fb}^{-1}$	$10.5 imes 10^6 (D^0) \ 8.4 imes 10^6 (D^+)$	~10-30%
BESI		4.18 GeV	3.0 fb ⁻¹	$3 \times 10^{6} (D_{s}^{+})$	
		4.6 GeV	$0.6 \ {\rm fb}^{-1}$	$1 imes 10^5 (\Lambda_c^+)$	
	KEKB (e^+e^-) PEP-II (e^+e^-)	10.58 GeV 10.58 GeV	1 ab ⁻¹ 0.5 ab ⁻¹	$\begin{array}{c} 1.3\times 10^9 (D^0)\\ 7.7\times 10^8 (D^+)\\ 2.5\times 10^8 (D_s^+)\\ 1.5\times 10^8 (\Lambda_c^+)\\ 6.5\times 10^8 (D^0)\\ 3.8\times 10^8 (D^+)\\ 1.2\times 10^8 (D_s^+)\\ 0.7\times 10^8 (\Lambda_c^+) \end{array}$	~5-10%
0	Tevatron (<i>pp</i>)	1.96 TeV	9.6 fb ⁻¹	1.3×10^{11}	++ 2
LHCh	LHC (pp)	7 TeV 8 TeV	1.0 fb ⁻¹ 2.0 fb ⁻¹	5.0×10^{12}	<0.5%

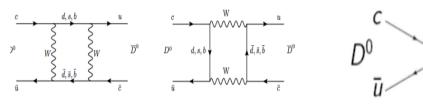
$D^0-\overline{D}^0$ mixing

 D^0 and \overline{D}^0 are flavor eigenstates, propagate and decays according to

$$i\frac{\partial}{\partial t} \begin{pmatrix} D^0(t)\\ \bar{D}^0(t) \end{pmatrix} = \begin{pmatrix} M - \frac{i}{2}\Gamma \end{pmatrix} \begin{pmatrix} D^0(t)\\ \bar{D}^0(t) \end{pmatrix}$$

D⁰ and $\overline{\mathbf{D}}^{0}$ are combinations of mass eigenstates $|D_1\rangle = p|D^0\rangle + q|\overline{D}^0\rangle$

 $|D_2\rangle = p|D^0\rangle - q|\bar{D}^0\rangle$


Two parameters describe D^0 and \overline{D}^0 mixing $x \equiv \frac{\Delta M}{\Gamma}$ $\Delta M \equiv M_1 - M_2$ $y \equiv \frac{\Delta \Gamma}{2\Gamma}$ $\Delta \Gamma \equiv \Gamma_1 - \Gamma_2$ The mass eigenstates develop in time as

$$D_{1,2}(t)\rangle = e_{1,2}(t)|D_{1,2}(0)\rangle$$

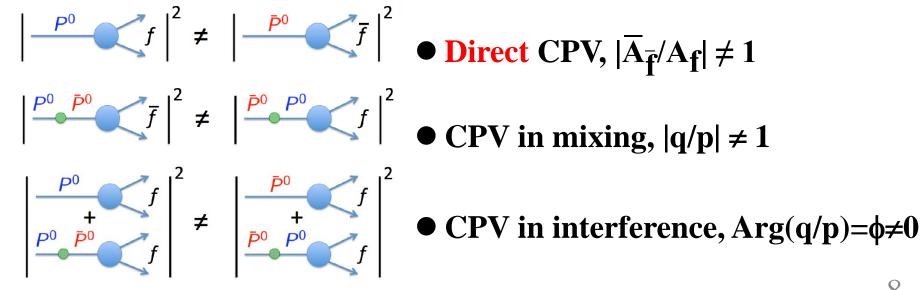
$$e_{1,2}(t) \equiv e^{\left[-i\left(M_{1,2}-\frac{i}{2}\Gamma_{1,2}\right)t\right]}$$

If either x or y are not zero, mixing occurs $|\langle \bar{D}^0 | D^0(t) \rangle|^2 = \frac{1}{2} \left| \frac{q}{p} \right|^2 e^{-\Gamma t} \left[\cosh(y\Gamma t) - \cos(x\Gamma t) \right]$ $|\langle D^0 | \bar{D}^0(t) \rangle|^2 = \frac{1}{2} \left| \frac{p}{q} \right|^2 e^{-\Gamma t} \left[\cosh(y\Gamma t) - \cos(x\Gamma t) \right]$

$D^0-\overline{D}^0$ mixing

- $D^0 \overline{D}^0$ mixing: only up-type quark meson system $K^0 \Leftrightarrow \overline{K}^0, \ B^0_d \Leftrightarrow \overline{B}^0_d$ and $B^0_S \Leftrightarrow \overline{B}^0_S$
- In Standard model (SM), D⁰-D
 [¯]⁰ mixing is
 ✓ GIM & CKM
- The SM predicts: |x|, |y| ~*O*(1%)

short distance (<0.1%)

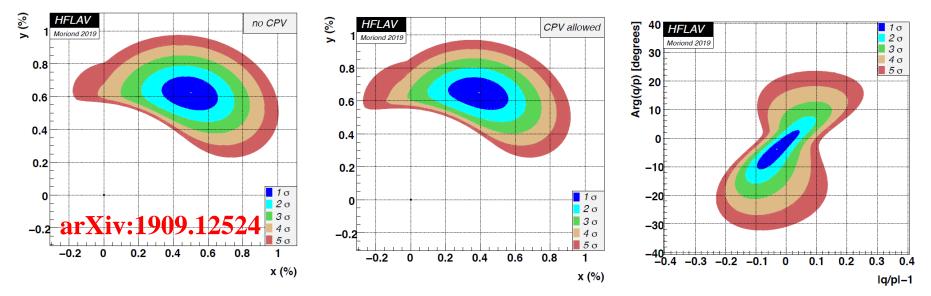


long distance (~1%)

- Precisely measured x and y
 - ✓ Test SM prediction
 - ✓ Sensitive to new physics

CP violation

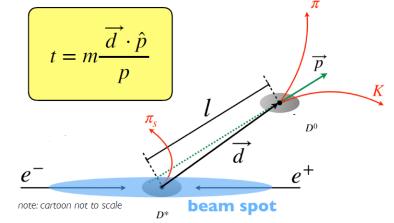
- CPV @SM: phase in CKM
 - \checkmark @ charm sector: ~O(10⁻³)
 - \checkmark ~1% exp. sensitivity to observe NP
- $\checkmark \text{ Decay @ D^+ & D_S^+: direct CPV} \quad A_{CP} = \frac{\Gamma(D \to f) \Gamma(\bar{D} \to \bar{f})}{\Gamma(D \to f) + \Gamma(\bar{D} \to \bar{f})}$ • Time integrated CP asymmetry A_{CP}
 - ✓ Decay @ D⁰: direct and indirect CPV combined



Direct CPV,
$$|\overline{A}_{\overline{f}}/A_{\overline{f}}| \neq 1$$

Status of D⁰-D ⁰ mixing and CPV

D⁰-D
[¯]⁰ mixing is well established, x and y are small than < 10⁻²
 ✓ If p = q, no CP violation


✓ If $|q/p| \neq 1$, CP violation (CPV) occurs, |q/p| and $Arg(q/p) = \phi$

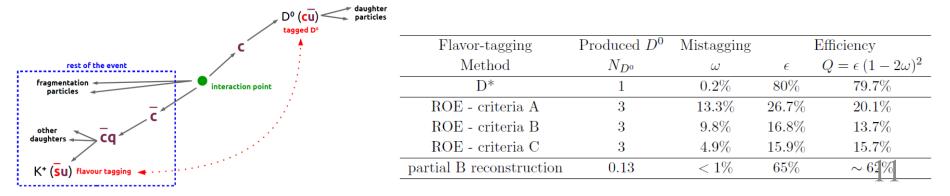
• No evidence for CPV from $D^0 - \overline{D}^0$ mixing $|q/p| \neq 1$ and $\phi \neq 0$.

Tag D^0 and \overline{D}^0

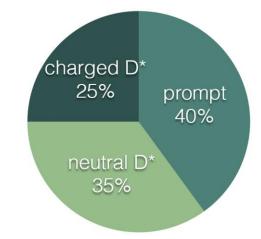
• Decay $e^+e^- \rightarrow c\bar{c} \rightarrow D^* + X$ $\checkmark D^0/\bar{D}^0$ tagged by π_s of D^* $D^{*+}(c\bar{d}) \rightarrow D^0(c\bar{u})\pi_s^+$ $D^{*-}(\bar{c}d) \rightarrow \bar{D}^0(\bar{c}u)\pi_s^-$

✓ select D^0/\overline{D}^0 from $c\overline{c}$ events by ^{note: cartoon not to scale} momentum of D^0 at CMS > (about) 2.5GeV/c

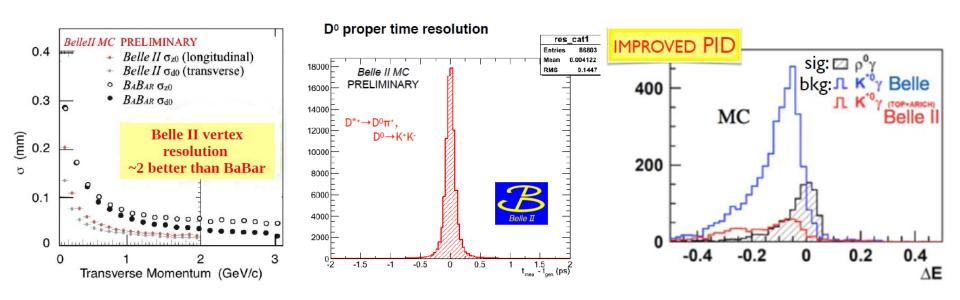
- ✓ Determine D^0/\overline{D}^0 lifetime t and its
- \checkmark error σ_t with vertices and momentum


• Partial reconstruction: $\mathbf{B}^0 \rightarrow \mathbf{D}^* + \mathbf{I} \mathbf{v}_1$ and $\mathbf{D}^* + \mathbf{v} \rightarrow \mathbf{D}^0 \pi_s \mathbf{s}$

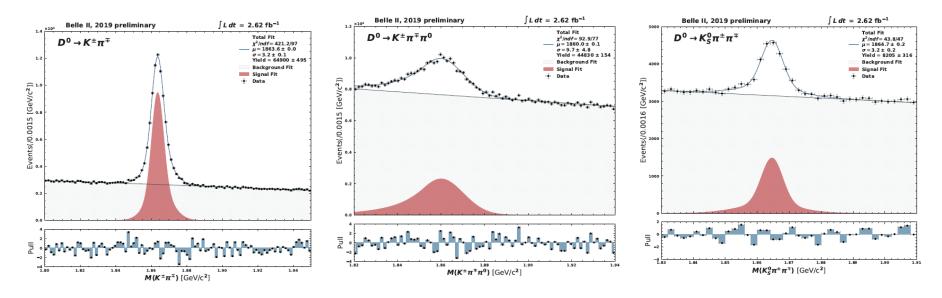
- ✓ High efficiency (~65%) and low mis-tagging rate
- ✓ Absolute branching fraction
- $\checkmark \text{ Low } D^0 / \overline{D}{}^0 \text{ yield} \Rightarrow \text{Belle II}$


Prompt D^0/\overline{D}^0 flavor tag

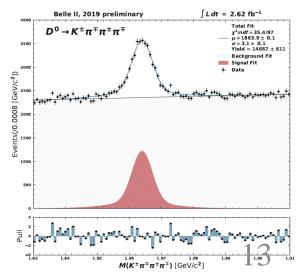
• (New) ROE method: tag D⁰/D⁰ from non-charged D* decay


- \checkmark Events with one K^{\pm}
- ✓ Flavor tagged by charge of kaon
- ✓ Flavor mis-tagging due to cc̄ss̄ events
- ✓ Irreducible background due to DCS decay
- ROE method with higher mis-tagging rate and lower purity
- D* & ROE methods, almost double D^0/\overline{D}^0 sample
- A reduction of ~15% of σ_{stst} on A_{CP}

 D^0/\overline{D}^0 mother in $c\overline{c}$ events



Performance with D⁰

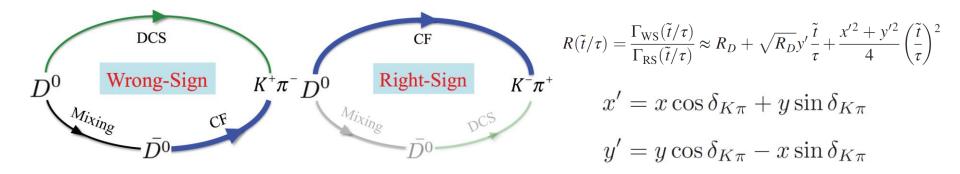


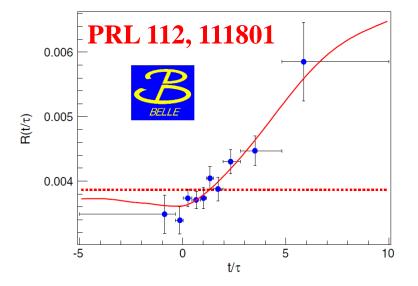
- Belle II vertex resolution, ~2 better than BaBar
- Decay time resolution 0.14ps, ~2 better than Belle,
- Increased tracking volume in SVD & CDC \Rightarrow ~30% higher K_S efficiency
- Improved PID with better K/ π separation relative to Belle

Charm from $e^+e^- \rightarrow c\overline{c}$

Reconstructed D⁰ with 2.62 fb⁻¹ data
Belle II is ready for charm physics

Prospects for charm at Belle II


• The following projections are extrapolated from Belle results


 $\sigma_{\text{Belle II}} = \sqrt{(\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2) \cdot (\mathcal{L}_{\text{Belle}}/50 \text{ ab}^{-1}) + \sigma_{\text{irred}}^2}$

- Assumption: most of systematics scale with statistics
- Maybe (other) sources of systematics errors that do no scale with statistics, that show up in very high statistics samples.
 - ✓ Belle II will have high statistics control samples to keep them under control
- The detector improvements w.r.t. Belle will be helpful, but their effect is not included in these extrapolations unless Otherwise stated.

Wrong-sign $D^0 \rightarrow K^+ \pi^-$

• Time-depend ratios of WS to RS decay rates with CP conservation

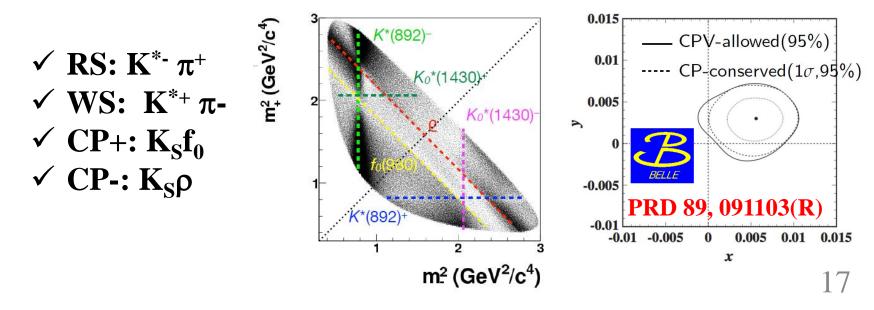
$\delta_{K\pi}$: relative strong phase

Test hypothesis (χ^2/DOF)	Parameters	Fit results (10 ⁻³)	R_D	Correlation coefficient y'	
Mixing (4.2/7)	$R_D \\ y' \\ x'^2$	$\begin{array}{c} 3.53 \pm 0.13 \\ 4.6 \pm 3.4 \\ 0.09 \pm 0.22 \end{array}$	1	-0.865 1	$+0.737 \\ -0.948 \\ 1$
No mixing (33.5/9)	R_D	3.864 ± 0.059			


Wrong-sign D⁰ -> K⁺ π^-

		0.976ab ⁻¹	5 ab ⁻¹	20 ab ⁻¹	50 ab ⁻¹
NO CPV	δ x'²(10 -5)	22	7.5	3.7	2.3
	δy'(%)	0.34	0.11	0.056	0.035
CPV allowed	δx'(%)		0.37	0.23	0.15
anoweu	δy'(%)		0.26	0.17	0.10
	δ q/p		0.197	0.089	0.051
	δ φ(°)		15.5	9.2	5.7

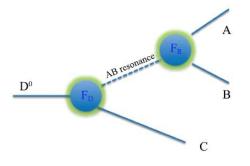
• About factor 8-10 better


Self-conjugated D⁰ -> $K_s \pi^+ \pi^-$

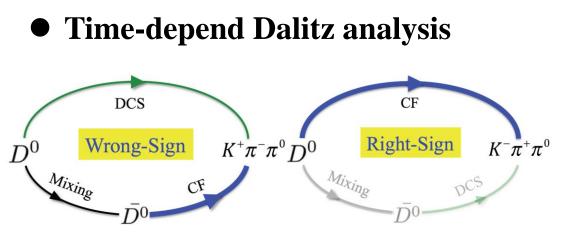
Time-depend Dalitz analysis allows a direct measurement of (x, y), |q/p| and Arg(q/p)= \$\overline\$

 $\begin{aligned} |\mathcal{M}(f,t)|^2 &= \frac{e^{-\Gamma t}}{2} [(|\mathcal{A}_f|^2 + |\frac{q}{p}|^2 |\mathcal{A}_{\bar{f}}|^2) \cosh(y\Gamma t) + (|\mathcal{A}_f|^2 - |\frac{q}{p}|^2 |\mathcal{A}_{\bar{f}}|^2) \cos(x\Gamma t) \\ &+ 2\operatorname{Re}[\frac{q}{p}\mathcal{A}_{\bar{f}}\mathcal{A}_f^*] \sinh(y\Gamma t) + 2\operatorname{Im}[\frac{q}{p}\mathcal{A}_{\bar{f}}\mathcal{A}_f^*] \sin(x\Gamma t)] \end{aligned}$

• Belle used 1.23×10⁶ sample, rich physics process



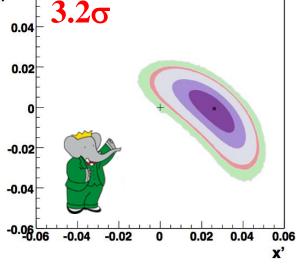
Self-conjugated D⁰ -> $K_s \pi^+ \pi^-$


• Expected Belle II sensitivity

- ✓ A significantly improved σ_{stat}
- ✓ Irreducable uncertainty is Dalitz model
- ✓ (dominant) Dalitz model uncertainty
- ✓ (promising) model independent approach

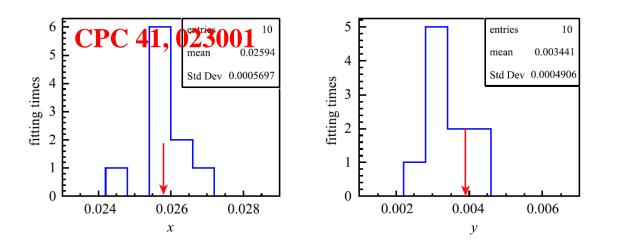
Data	stat.	\mathbf{sy}	st.	Total	stat.	\mathbf{sy}	st.	Total
		red.	irred.			red.	irred.	
		σ_x	(10^{-2})		$\sigma_y (10^{-2})$			
$976 { m ~fb^{-1}}$	0.19	0.06	0.11	0.20	0.15	0.06	0.04	0.16
5 ab^{-1}	0.08	0.03	0.11	0.14	0.06	0.03	0.04	0.08
$50 { m ab}^{-1}$	0.03	0.01	0.11	0.11	0.02	0.01	0.04	0.05
		q/p	(10^{-2})			ϕ	(°)	
$976 { m ~fb^{-1}}$	15.5	5.2 - 5.6	7.0-6.7	17.8	10.7	4.4 - 4.5	3.8 - 3.7	12.2
5 ab^{-1}	6.9	2.3 - 2.5	7.0-6.7	9.9 - 10.1	4.7	1.9 - 2.0	3.8 - 3.7	6.3 - 6.4
$50 {\rm ~ab^{-1}}$	2.2	0.7-0.8	7.0-6.7	7.0-7.4	1.5	0.6	3.8-3.7	4.0-4.2

Wrong-sign $D^0 \rightarrow K^+ \pi^- \pi^0$



 $\frac{dN_{\bar{f}}(s_{12}, s_{13}, t)}{ds_{12}ds_{13}dt} \propto e^{-\Gamma t} r_0^2 \Big\{ |A_{\bar{f}}^{\text{DCS}}|^2 + |A_{\bar{f}}^{\text{DCS}}| |A_{\bar{f}}^{\text{CF}}| [\tilde{y}\cos\delta_{\bar{f}} - \tilde{x}\sin\delta_{\bar{f}}] (\Gamma t) + \frac{\tilde{x}^2 + \tilde{y}^2}{4} |A_{\bar{f}}^{\text{CF}}|^2 (\Gamma t)^2 \Big\},$

 $\begin{aligned} x'_{K\pi\pi^0} &\equiv x \cos \delta_{K\pi\pi^0} + y \sin \delta_{K\pi\pi^0}, \\ y'_{K\pi\pi^0} &\equiv y \cos \delta_{K\pi\pi^0} - x \sin \delta_{K\pi\pi^0}. \end{aligned}$


• veto no D^0 - \overline{D}^0 mixing @ three-body decay $a_{0.0}$

Resonance	$a_j^{ m DCS}$	$\delta_j^{ m DCS}$ (°)	f_j (%)
ho(770)	1 (fixed)	0 (fixed)	39.8 ± 6.5
$K_2^{*0}(1430)$	0.088 ± 0.017	-17.2 ± 12.9	2.0 ± 0.7
$K_0^{*+}(1430)$	6.78 ± 1.00	69.1 ± 10.9	13.1 ± 3.3
$K^{*+}(892)$	0.899 ± 0.005	-171.0 ± 5.9	35.6 ± 5.5
$K_0^{*0}(1430)$	1.65 ± 0.59	-44.4 ± 18.5	2.8 ± 1.5
$K^{*0}(892)$	0.398 ± 0.038	24.1 ± 9.8	6.5 ± 1.4
ho(1700)	5.4 ± 1.6	157.4 ± 20.3	2.0 ± 1.1
$x'_{K\pi\pi^0}/r_0 = 0$	$0.353 \pm 0.091 \pm 0.0$	066	011001
$y'_{K\pi\pi^0}/r_0 =$	$-0.002 \pm 0.090 \pm$	0.0 FRL 103 ,	211801

Wrong-sign D⁰ -> K⁺ π ⁻ π ⁰

- For 50 ab⁻¹ data, there are (about) 225K D⁰ -> K⁺ $\pi^- \pi^0$ events
- MC study, smear exponential time with Gauss ($\sigma = 140 \text{ ps}$)
- Without considering background effect
- BaBar results @ MC production, fixed δ and r_0 fixed
 - ✓ An order of magnitude better than BaBar, if no background
 - ✓ Statistical uncertainty only
 - ✓ More improvement from ROE method

$$\sigma_{x'} = 0.057\%$$

 $\sigma_{y'} = 0.049\%$

Time-integrated CP asymmetry A_{CP}

• For Belle II 50 ab⁻¹ data, A_{CP} with precision of order 0.1%

Table 121: Time-integrated CP asymmetries measured by Belle, and the precision expected for Belle II in 50 ab⁻¹ of data.

Mode	\mathcal{L} (fb ⁻¹)	A_{CP} (%)	Belle II 50 ab^{-1}
$D^0 \rightarrow K^+ K^-$	976	$-0.32\pm 0.21\pm 0.09$	± 0.03
$D^0 \to \pi^+\pi^-$	976	$+0.55\pm 0.36\pm 0.09$	± 0.05
$D^0 \to \pi^0 \pi^0$	966	$-0.03\pm 0.64\pm 0.10$	± 0.09
$D^0 \to K^0_S \pi^0$	966	$-0.21\pm 0.16\pm 0.07$	± 0.03
$D^0 \to K^0_S \eta$	791	$+0.54\pm 0.51\pm 0.16$	± 0.07
$D^0 \to K^0_S \eta'$	791	$+0.98\pm 0.67\pm 0.14$	± 0.09
$D^0 \to \pi^+ \pi^- \pi^0$	532	$+0.43 \pm 1.30$	± 0.13
$D^0 \to K^+ \pi^- \pi^0$	281	-0.60 ± 5.30	± 0.40
$D^0 \to K^+\pi^-\pi^+\pi^-$	281	-1.80 ± 4.40	± 0.33
$D^+ \to \phi \pi^+$	955	$+0.51 \pm 0.28 \pm 0.05$	± 0.04
$D^+ \to \eta \pi^+$	791	$+1.74 \pm 1.13 \pm 0.19$	± 0.14
$D^+ \to \eta' \pi^+$	791	$-0.12\pm 1.12\pm 0.17$	± 0.14
$D^+ \to K^0_S \pi^+$	977	$-0.36\pm 0.09\pm 0.07$	± 0.03
$D^+ \to K^0_S K^+$	977	$-0.25\pm 0.28\pm 0.14$	± 0.05
$D_s^+ \to K_S^0 \pi^+$	673	$+5.45 \pm 2.50 \pm 0.33$	± 0.29
$D_s^+ \to K_S^0 K^+$	673	$+0.12\ \pm 0.36\ \pm 0.22$	± 0.05

SCS decay
$$D^0 \rightarrow K_S^0 K_S^0$$

 $A_{CP} = \frac{\Gamma(D^0 \to K^0_S K^0_S) - \Gamma(\bar{D}^0 \to K^0_S K^0_S)}{\Gamma(D^0 \to K^0_c K^0_c) + \Gamma(\bar{D}^0 \to K^0_c K^0_c)} \quad A_{CP} = A^d_{CP} + A^m_{CP} + A^i_{CP}$

- Direct CPV @ SCS decay: order 10⁻⁴, interference of tree and penguin amplitudes.
- SCS decay: sensitive to contribution by strong penguin operator
- Promising channel, CPV can be as large as 1% in SM

$$A_{\text{raw}} = \frac{N(D^0) - N(\bar{D}^0)}{N(D^0) + N(\bar{D}^0)} = A_{CP} + A_{\text{FB}} + A_{\epsilon}^{\pm} + A_{\epsilon}^{K}$$

- ✓ A_{CP}: true CP asymmetry
- \checkmark A^K_f: different strong interaction of K⁰/ \overline{K}^0 with detector material
- ✓ A_{FB}: forward-backward production asymmetry of D⁰
 ✓ A[±]_ϵ: from different detection efficiencies for π[±]

 $D^0 \rightarrow K_S^0 \pi^0$

Normalization mode

SCS decay $D^0 \rightarrow K_S^0 K_S^0$

 $A_{CP}(D^0 \to K^0_{s} K^0_{s}) = A_{\text{raw}}(K^0_{s} K^0_{s}) - A_{\text{raw}}(K^0_{s} \pi^0) + A_{CP}(K^0_{s} \pi^0)$

- Due to $K_S^0 K_S^0$, asymmetry from A_{ϵ}^K is null
- Dominant uncertainty by $A_{CP}(D^0 \rightarrow K_S^0 \pi^0)$.
- With Belle II 50 ab^{-1} data, $\sigma_{stat} = 0.23\%$

Source PRL 119, 171801	A _{CP} (%)	B (%)
$D^0 \to K^0_S K^0_S$ PDF parametrization	± 0.01	± 0.28
$D^0 \to K_S^0 \pi^0$ PDF parametrization	± 0.00	± 0.23
$D^0 \to K^0_S K^0_S$ peaking background	± 0.01	± 0.59
$D^0 \to K_S^0 \pi^0$ peaking background	± 0.00	± 0.03
$K^0/\bar{K^0}$ material effects	± 0.01	
K_{S}^{0} reconstruction efficiency		± 1.57
π^{0} reconstruction efficiency	$(\cdot \cdot \cdot)$	± 2.16
Quadratic sum of above	± 0.02	± 2.76
External input $(D^0 \to K^0_S \pi^0 \text{ mode})$	± 0.17	± 3.33

Exp.	Results	\mathcal{L} (fb^{-1})
CLEO A_{CP}	$(-23\pm19)\%$	13.7
LHCb A_{CP}	$(2.0\pm 2.9\pm 1.0)\%$ (Beauty 2018)	5
Belle A_{CP}	$(-0.02 \pm 1.53 \pm 0.02 \pm 0.17)\%$	921
BESIII Br	$(1.67 \pm 0.11 \pm 0.11) \times 10^{-4}$	2.93
Belle Br	$(1.32 \pm 0.02 \pm 0.04 \pm 0.04) \times 10^{-4}$	921

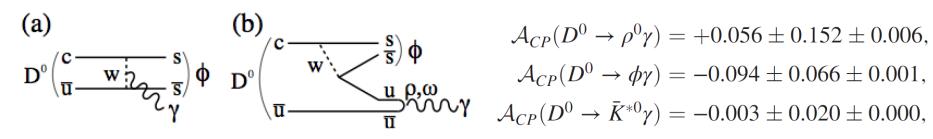
SCS decay $D^+ \rightarrow \pi^+ \pi^0$

• Because CPV in $\pi^+\pi^0$ is tiny in SM, any CP asymmetry found would point to NP

$$A_{\rm raw}^{\pi\pi} = \frac{N(D^+ \to \pi^+ \pi^0) - N(D^- \to \pi^- \pi^0)}{N(D^+ \to \pi^+ \pi^0) + N(D^- \to \pi^- \pi^0)} \quad A_{\rm raw}^{\pi\pi} = A_{CP}^{\pi\pi} + A_{FB} + A_{\varepsilon}^{\pi^\pm}$$

- ✓ A_{CP}: true CP asymmetry
- $\begin{array}{ll}\checkmark & A_{FB}: \mbox{ forward-backward production asymmetry of } D^0 & \mbox{ Normalization mode} \\ \checkmark & A_{\varepsilon}^{\pm}: \mbox{ from different detection efficiencies for } \pi^{\pm} & D^+ \to \pi^+ K_S^0 \end{array}$

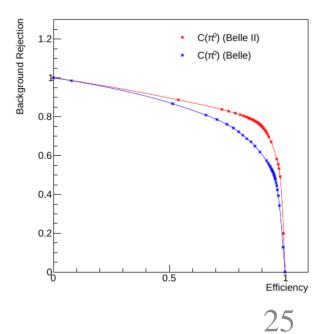
		C1
PRD 97, 011101(R) Source	$D \to \pi\pi$ tagged	$D \to \pi \pi$ untagged
Signal shape Peaking background shape	$\pm 0.02 \\ \pm 0.19$	$\pm 0.23 \\ \pm 0.22$
$\Delta A_{\rm raw}$ measurement	±0.19	±0.32
$A_{CP}(D \to K_S^0 \pi)$ measurement	±0	.12
Total (combined A_{CP} measurement)) ±0	.23


TABLE II.	Summary of systematic uncertaintie	es (%) on A_{CP} .
-----------	------------------------------------	----------------------

• Belle: 0.921 ab⁻¹ data

 $A_{CP}(D^+ \to \pi^+ \pi^0) = (+2.31 \pm 1.24 \pm 0.23)\%$

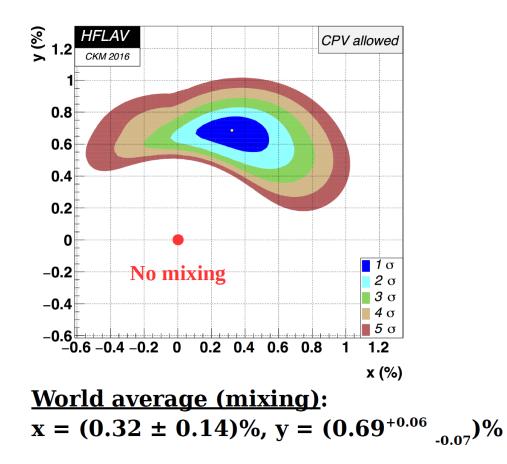
• Belle II: 50 ab⁻¹ data $\checkmark \sigma_{stat} = 0.2-0.4\%$

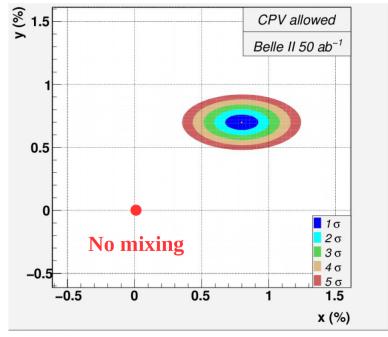

$D^0 \rightarrow \gamma \phi$ and $\gamma \rho$

- **Direct CPV in radiative decays can be** enhanced by chromomagnetic dipole operators **PRL 109, 171801**
 - \checkmark A_{CP} up to several %
- MC study: (similar) veto $D^0 \rightarrow V\pi^0$ by π^0 neutral network and D⁰ mass resolution

	Belle σ_{sta}	Belle II: σ _{stat}			
	0.976	5	15	50	
D ⁰ -> γρ	±0.152	±0.07	±0.04	±0.02	
$D^0 \rightarrow \gamma \phi$	±0.066	±0.03	±0.02	±0.01	

PRL 118, 051801


Summary and outlook


• SuperKEKB & Belle II are excellent platform for charm physics

- ✓ Phase III already started in 2019
- ✓ Belle II will collect 50 ab⁻¹ data
- ✓ Belle II has better D⁰ decay time resolution, K_S & neutrals reconstruction, PID and D⁰ tag than Belle
- Better precision on x and y variables is expected
- A_{CP} with precision of order 0.1% is expected
- More details at Belle Physics Book arXiv:1808.10567

Expected Belle II precision

Belle II (50 ab-1)

 $x = 0.8 \pm 0.09\%$, $y = 0.7 \pm 0.04\%$

(result is conservative, does not include modes: $K^{+}\pi^{-}\pi^{0}$, $K_{s}K^{+}K^{-}$ etc.)