The clarification for the rescattering mechanism

Hua-Yu Jiang (蒋华玉)

School of Nuclear Science and technology

Lanzhou University

Particle Physics and Nuclear Physics

In collaboration with: Fu-Sheng Yu, Run-Hui Li

2019.10.31-11.03 Linfen Shanxi Normal University

Content

- Introduction
- The rescattering mechanism
- The isospin triangle relation (ITR)
- The ITR in rescattering mechanism
- The quark diagram of rescattering mechanism
- Triangle singularity
- Summary

- Matter-antimatter asymmetry
- CP-violation $\Delta A_{CP} \equiv A_{CP} (D^0 \to K^+ K^-) \\
 - A_{CP} (D^0 \to \pi^+ \pi^-) \\
 = (-1.54 \pm 0.29) \times 10^{-3}$
- How to effectively calculate the decay amplitude of hadron?

- Heavy quark physics
- HQET
- QCDSR, LCSR
- pQCD
- QCDF
- The models

• In general, the study of the b- and c-hadron weak decays based on topology diagram

Which can be calculated by different method, such as: Topology amplitude approach (Hai Yang Cheng et.al), Factorization (BSW), FAT(Fu-Sheng Yu et.al), pQCD(Hsiang-nan Li et.al), Final state interaction (Hai Yang Cheng et.al)

Hua-Yu Jiang

 In general, the study of the b- and c-hadron weak decays based on topology diagram

In FAT (Fu-Sheng Yu et.al)

$$\begin{split} T_{P}(C_{P}) &= \frac{G_{F}}{\sqrt{2}} V_{CKM} a_{1}(\mu) \left(a_{2}^{P}(\mu)\right) f_{V} m_{V} F_{1}^{DP}(m_{V}^{2}) 2(\varepsilon_{V} \cdot p_{D}), \\ T_{V}(C_{V}) &= \frac{G_{F}}{\sqrt{2}} V_{CKM} a_{1}(\mu) \left(a_{2}^{V}(\mu)\right) f_{P} m_{V} A_{0}^{DV}(m_{P}^{2}) 2(\varepsilon_{V} \cdot p_{D}), \\ a_{1}(\mu) &= C_{2}(\mu) + \frac{C_{1}(\mu)}{N_{C}}, \\ a_{2}^{P(V)}(\mu) &= C_{1}(\mu) + C_{2}(\mu) \left(\frac{1}{N_{C}} + \chi_{P(V)}^{C} e^{i\phi_{P(V)}^{C}}\right) \\ E_{P,V} &= \frac{G_{F}}{\sqrt{2}} V_{CKM} C_{2}(\mu) \chi_{q(s)}^{E} e^{i\phi_{q(s)}^{E}} f_{D} m_{D} \frac{f_{P}}{f_{\pi}} \frac{f_{V}}{f_{\rho}} (\varepsilon_{V} \cdot p_{D}), \\ A_{P,V} &= \frac{G_{F}}{\sqrt{2}} V_{CKM} C_{1}(\mu) \chi_{q(s)}^{A} e^{i\phi_{q(s)}^{A}} f_{D} m_{D} \frac{f_{P}}{f_{\pi}} \frac{f_{V}}{f_{\rho}} (\varepsilon_{V} \cdot p_{D}), \end{split}$$

Hua-Yu Jiang

- The long-distance contributions can not be effectively calculated
- The final state interaction plays an important role
- Which includes the rescattering mechanism and the resonance contributions

Hua-Yu Jiang

- Xue-Qian Li, Bing-Song Zou, Phys.Lett. B399 (1997)
 297-302
- You-Shan Dai, Dong-Sheng Du, Xue-Qian Li, Zheng-Tao Wei, Bing-Song Zou, Phys.Rev. D60 (1999) 014014
- Medina Ablikim , Dong-Sheng Du, Mao-Zhi Yang, Phys.Lett.B 536 (2002) 34-42
- Hai-Yang Cheng, Chun-Khiang Chua, Amarjit Soni, Phys.Rev.D 71, 014030(2005)
- Fu-Sheng Yu, **Hua-Yu Jiang**, Cai-Dian Lü, Wei Wang, Zhen-Xing Zhao, Chin.Phys. C42 (2018), 051001

Hua-Yu Jiang

• $D \rightarrow \pi\pi$ decay in rescattering mechanism

[1] Medina Ablikim , Dong-Sheng Du, Mao-Zhi Yang, Phys.Lett.B 536 (2002) 34-42

$$\frac{1}{\sqrt{2}}A\left(D^0\to\pi^+\pi^-\right)=A\left(D^0\to\pi^0\pi^0\right)-A\left(D^+\to\pi^+\pi^0\right)$$

• $B \rightarrow D\pi$ decay in rescattering mechanism

[2] Hai-Yang Cheng, Chun-Khiang Chua, Amarjit Soni, Phys.Rev.D 71, 014030(2005)

$$A\left(\overline{B}^{0} \to D^{+}\pi^{-}\right) = \sqrt{2}A\left(\overline{B}^{0} \to D^{0}\pi^{0}\right) + A\left(B^{-} \to D^{0}\pi^{-}\right)$$

• Where they made a wrong assumption

Hua-Yu Jiang

- This problem produce some effects, when we use the rescattering mechanism to calculate.
- We will clarify the problem that has been displayed in history in the using of rescattering mechanism.
- And we also will discuss the quark level diagram of the rescattering mechanism.
- Actually, the rescattering process may be as a realistic physical process, that is the exist of triangle singularity.

Hua-Yu Jiang

• The rescattering mechanism in hadron level

• The effective Lagrangian

$$egin{split} \mathcal{L}_{eff} &= \mathcal{L}_{
ho\pi\pi} + \mathcal{L}_{D^*D\pi} + \cdots \ &= - \, i g_{
ho\pi\pi} \Big(
ho_\mu^+ \pi^0 ec{\partial}^\mu \pi^- +
ho_\mu^- \pi^+ ec{\partial}^\mu \pi^0 +
ho_\mu^0 \pi^- ec{\partial}^\mu \pi^+ \Big) \ &- \, i g_{D^*DP} (D^i \partial^\mu P_{ij} D_\mu^{*j\dagger} - D_\mu^{*i} \partial^\mu P_{ij} D^{j\dagger}) + \cdots \end{split}$$

We can get the Feynman rules and the Feynman diagrams in hadron level

Hua-Yu Jiang

• The calculation approach of the triangle diagram

• There have two different approaches

--(a) Directly calculate the triangle loop and add a form factor(cut off) to deal with the divergence

--(b) By using the optical theorem and Cutkosky cutting rule and also add a form factor

Hua-Yu Jiang

• (a) Directly calculate the triangle loop

$$\mathcal{M}(I_1, I_2; I_3) = \int \frac{d^4k}{(2\pi)^4} \frac{A(B(p) \to I_1(p_1)I_2(p_2))A(I_1(p_1)I_2(p_2) \xrightarrow{I_3(k)} f_1(p_3)f_2(p_4))}{(p_1^2 - m_1^2)(p_2^2 - m_2^2)}$$

- The introduced form factor $F(k^2) = \frac{\Lambda^2 m_k^2}{\Lambda^2 k^2}$
- The weak decay form factor will introduce some complexity in the loop integration

$$F(q^2) = rac{F(0)}{\left(1 - lpha rac{q^2}{M^2}
ight)} \quad or \quad F(q^2) = rac{F(0)}{\left(1 - lpha_1 rac{q^2}{M^2}
ight) \left(1 - lpha_2 rac{q^2}{M^2}
ight)}$$

Hua-Yu Jiang

• (b) By using the optical theorem and Cutkosky cutting rule

- $Abs\mathcal{M}(I_1, I_2; I_3) = \int \frac{d^4 p_1}{(2\pi)^3 2E_1} \frac{d^4 p_2}{(2\pi)^3 2E_2} \delta^4(p p_1 p_2) A(B(p) \to I_1(p_1) I_2(p_2)) \times A\left(I_1(p_1) I_2(p_2) \xrightarrow{I_3(k)} f_1(p_3) f_2(p_4)\right) \times A\left(I_1(p_1) I_2(p_2) \xrightarrow{I_3(k)} f_1(p_3) f_2(p_4)\right)$
- The introduced form factor $F(k^2) = \frac{\Lambda^2 m_k^2}{\Lambda^2 k^2}$

Hua-Yu Jiang

• The short-distance amplitude

 $A(B(p)
ightarrow I_1(p_1)I_2(p_2))$

• We deal with it in naïve factorization approach (BSW), to avoid double counting

 $\langle \mathcal{B}_{c}M|\mathcal{H}_{eff}|\mathcal{B}_{cc}\rangle_{\mathrm{SD}}^{T} = \frac{G_{F}}{\sqrt{2}}V_{cq'}^{*}V_{uq}a_{1}(\mu)\langle M|\bar{u}\gamma^{\mu}(1-\gamma_{5})q|0\rangle\langle \mathcal{B}_{c}|\bar{q}'\gamma_{\mu}(1-\gamma_{5})c|\mathcal{B}_{cc}\rangle$

 $\langle \mathcal{B}_{c}M|\mathcal{H}_{eff}|\mathcal{B}_{cc}\rangle_{\mathrm{SD}}^{C} = \frac{G_{F}}{\sqrt{2}}V_{cq'}^{*}V_{uq}a_{2}(\mu)\langle M|\bar{q}'\gamma^{\mu}(1-\gamma_{5})q|0\rangle\langle \mathcal{B}_{c}|\bar{u}\gamma_{\mu}(1-\gamma_{5})c|\mathcal{B}_{cc}\rangle$

Hua-Yu Jiang

• The hadron-hadron scattering amplitude

- We calculate this amplitude based on the hadronic level effective Lagrangian
- Chiral effective theory
- Heavy meson chiral perturbation theory

Reliability of the rescattering mechanism

FIG. 3: The absolute branching fractions of $\Xi_{cc}^{++} \to \Sigma_c^{++} \overline{K}^{*0}$ and pD^{*+} (top) and the ratio of $\mathcal{B}(\Xi_{cc}^{++} \to pD^{*+})/\mathcal{B}(\Xi_{cc}^{++} \to \Sigma_c^{++} \overline{K}^{*0})$ (bottom) as functions of η .

[Fu-Sheng Yu, **Hua-Yu Jiang**, Cai-Dian Lü, Wei Wang, Zhen-Xing Zhao, Chin.Phys. C42 (2018), 051001]

Hua-Yu Jiang

- $SU(3)_F$ flavor symmetry and $SU(2)_I \times SU(2)_U \times SU(2)_V$ symmetry (Isospin, U-spin, V-spin)
- One of the importance of the $SU(3)_F$ relation or isospin relation is to test the self-consistency of the theory
- Usually, the U-spin and V-spin symmetry will have a relatively bigger breaking effect

• The different definition for the hadron matrix isospin doublet $\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} \overline{d} \\ -\overline{u} \end{pmatrix}$ or V-spin doublet $\begin{pmatrix} d \\ s \end{pmatrix} \begin{pmatrix} \overline{s} \\ -\overline{d} \end{pmatrix}$

$$\begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta_{8}}{\sqrt{6}} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta_{8}}{\sqrt{6}} & K^{0} \\ K^{-} & \overline{K}^{0} & -\sqrt{\frac{2}{3}}\eta_{8} \end{pmatrix} \begin{pmatrix} \frac{\rho^{0}}{\sqrt{2}} + \frac{\omega_{8}}{\sqrt{6}} & \rho^{+} & K^{*+} \\ \rho^{-} & -\frac{\rho^{0}}{\sqrt{2}} + \frac{\omega_{8}}{\sqrt{6}} & K^{*0} \\ K^{*-} & \overline{K}^{*0} & -\sqrt{\frac{2}{3}}\omega_{8} \end{pmatrix} & \pi^{0} = \frac{u\overline{u} - d\overline{d}}{\sqrt{2}}$$

$$\begin{pmatrix} -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta_{8}}{\sqrt{6}} & \pi^{+} & K^{+} \\ -\pi^{-} & \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta_{8}}{\sqrt{6}} & K^{0} \\ -K^{-} & \overline{K}^{0} & -\sqrt{\frac{2}{3}}\eta_{8} \end{pmatrix} \begin{pmatrix} -\frac{\rho^{0}}{\sqrt{2}} + \frac{\omega_{8}}{\sqrt{6}} & \rho^{+} & K^{*+} \\ -\rho^{-} & \frac{\rho^{0}}{\sqrt{2}} + \frac{\omega_{8}}{\sqrt{6}} & K^{*0} \\ -R^{*-} & \overline{K}^{*0} & -\sqrt{\frac{2}{3}}\omega_{8} \end{pmatrix} & \pi^{0} = \frac{d\overline{d} - u\overline{u}}{\sqrt{2}}$$

Hua-Yu Jiang

- Take $B \rightarrow D\pi$ as an example:
- In the topology amplitude approach

• We can also directly calculate the relation by the isospin relation

$$\begin{split} \overline{B}{}^{0} &= b\,\overline{d} = \left|\frac{1}{2}, \frac{1}{2}\right\rangle, B^{-} = b\,\overline{u} = -\left|\frac{1}{2}, -\frac{1}{2}\right\rangle, D^{+} = c\,\overline{d} = \left|\frac{1}{2}, \frac{1}{2}\right\rangle, D^{0} = c\,\overline{u} = -\left|\frac{1}{2}, -\frac{1}{2}\right\rangle \\ \pi^{0} &= \frac{u\overline{u} - d\overline{d}}{\sqrt{2}} = -\left|1, 0\right\rangle, \ \pi^{-} = d\overline{u} = -\left|1, -1\right\rangle, \ H_{eff} = -\left|1, -1\right\rangle, \ b \to cd\overline{u} \\ \langle D^{0}\pi^{0}|H_{eff}|B^{0}\rangle &= -\frac{\sqrt{2}}{3}A_{\frac{3}{2}} + \frac{\sqrt{2}}{3}A_{\frac{1}{2}}, \\ \langle D^{+}\pi^{-}|H_{eff}|B^{0}\rangle &= \frac{1}{3}A_{\frac{3}{2}} + \frac{2}{3}A_{\frac{1}{2}} \\ \langle D^{0}\pi^{-}|H_{eff}|B^{-}\rangle &= A_{\frac{3}{2}} \end{split}$$

$$\sqrt{2} A \Big(\overline{B}{}^0 o D^0 \pi^0 \Big) + A (B^- o D^0 \pi^-) = A \Big(\overline{B}{}^0 o D^+ \pi^- \Big)$$

Hua-Yu Jiang

• In the topology amplitude approach

Hua-Yu Jiang

• We can also directly calculate the relation by the isospin relation

$$\begin{split} \overline{B}{}^{0} &= b\,\overline{d} = \left|\frac{1}{2}, \frac{1}{2}\right\rangle, B^{-} = -b\,\overline{u} = \left|\frac{1}{2}, -\frac{1}{2}\right\rangle, D^{+} = c\,\overline{d} = \left|\frac{1}{2}, \frac{1}{2}\right\rangle, D^{0} = -c\,\overline{u} = \left|\frac{1}{2}, -\frac{1}{2}\right\rangle \\ \pi^{0} &= \frac{d\,\overline{d} - u\,\overline{u}}{\sqrt{2}} = |1, 0\rangle, \ \pi^{-} = -d\,\overline{u} = |1, -1\rangle, \ H_{eff} = |1, -1\rangle, \ b \to cd\,\overline{u} \\ \langle D^{0}\,\pi^{0}\,|H_{eff}\,\Big|\overline{B}{}^{0}\,\Big\rangle &= \frac{\sqrt{2}}{3}\,A_{\frac{3}{2}} - \frac{\sqrt{2}}{3}\,A_{\frac{1}{2}}, \\ \langle D^{+}\,\pi^{-}\,|H_{eff}\,\Big|\overline{B}{}^{0}\,\Big\rangle = \frac{1}{3}\,A_{\frac{3}{2}} + \frac{2}{3}\,A_{\frac{1}{2}} \\ \langle D^{0}\,\pi^{-}\,|H_{eff}\,\Big|B^{-}\,\Big\rangle &= A_{\frac{3}{2}} \end{split}$$

$$\sqrt{2} A \Big(\overline{B}{}^0 o D^0 \pi^0 \Big) + A \Big(\overline{B}{}^0 o D^+ \pi^- \Big) = A (B^- o D^0 \pi^-)$$

Hua-Yu Jiang

- The isospin triangle relation should also be kept in rescattering mechanism
- To obtain the isospin triangle relation, the assumption had been made[Phys.Rev.D 71, 014030(2005)]

Hua-Yu Jiang

- Consider the next two points
- First, the two diagram can not be canceled

- Since, the two amplitudes aren't identical
- In Lattice QCD, the first one can be easily calculated

• Second, the phase difference should be considered

• Since the exchange of the final state will also produce another relative minus sign

Hua-Yu Jiang

• Consider the external *W*-emission diagram *T* in the weak vertex, then in isospin symmetry

• We calculate **T** in naïve factorization approach

$$T\left(\overline{B}{}^{0}
ightarrow D^{+}\pi^{-}
ight) = irac{G_{F}}{\sqrt{2}}V_{cb}V_{ud}^{*}a_{1}(\mu)(m_{B}^{2}-m_{D}^{2})f_{\pi}F_{0}^{BD}(m_{\pi}^{2})$$

Hua-Yu Jiang

28

The ITR in rescattering mechanism

- The relation only depends on the scattering process
- And the corresponding Feynman rules

• The relation only depends on the scattering process

• We can simply obtain the ITR of $B \rightarrow D\pi$

Hua-Yu Jiang

• The relation only depends on the scattering process

• We can simply obtain the ITR of $B \rightarrow D\pi$

 $\sqrt{2} A ig(\overline{B}{}^{_0} o D^{_0} \pi^{_0} ig) + A ig(\overline{B}{}^{_0} o D^+ \pi^- ig) = A (B^- o D^0 \pi^-)$

Hua-Yu Jiang

• For different intermediate hadron states or different kinds of effective hadron coupling vertex

33

 And also, if consider the internal W-emission diagram C in the weak vertex, then in isospin symmetry

- We also calculate the short-distance contributions of C in naïve factorization approach (BSW) $C(\overline{B}^0 \rightarrow D^+ \pi^-) = i \frac{G_F}{\sqrt{2}} V_{cb} V_{ud}^* a_2(\mu) (m_B^2 - m_D^2) f_\pi F_0^{BD}(m_\pi^2)$
- $a_1 = 1.07, a_2 = 0.017$

Hua-Yu Jiang

• If the weak vertex is **C** diagram

Hua-Yu Jiang

The quark diagram of rescattering mechanism

• The quark level diagram of $B \rightarrow D\pi$ in rescattering mechanism

36

How to get the quark diagram

• We combine the topology diagram of weak vertex with quark level meson-meson scattering diagram

• There have several different conbination

Hua-Yu Jiang

How to get the quark diagram

• For baryon decay, this will be more complicated

Hua-Yu Jiang

The corresponding between quark diagram and topology diagram

• The quark diagram contribute to the topology

Hua-Yu Jiang

The corresponding between quark diagram and hadron diagram

Hua-Yu Jiang

Meson-meson scattering amplitude

• If we deeply understand the quark diagram of rescattering mechanism, we can extract the meson-meson scattering amplitude

- We can't calculate these amplitude, except for the Lattice QCD, actually only the first one.
- We can use the Cutkosky rule, the initial and final state particles will be on shell in the scattering.

Triangle singularity

 If all the three intermediate particles are its mass shell in the meantime, i.e., the rescattering process being a realistic physical process

• In this case, the loop-integral will be divergence, that is the triangle singularity.

Hua-Yu Jiang

Triangle singularity

• The criteria for the triangle singularity

$$rac{m_1m_4^2+m_3M^2}{m_1+m_3}-m_1m_2\leqslant m_2^2 \ \leqslant (M-m_1)^2$$

 We can deal with the triangle singularity by substitute the propagator of particle two with an Breit-Wigner propagator, where the width of the particle two are considered

$$rac{i}{p_2^2-m_2^2} \hspace{2mm} \Rightarrow \hspace{2mm} rac{i}{p_2^2-m_2^2+im_2\Gamma}$$

Hua-Yu Jiang

An introduction for our group

• We are studying the decay of doubly heavy baryons in rescattering mechanism, including doubly charmed baryon, *bc*-baryon and *bb*-baryon.

Fu-Sheng Yu, Hua-Yu Jiang et.al,

Rui-Hui Li et.al,

Zhen-Jun Xiao et.al

• We are also planning to study the singly charmed baryon decays in rescattering mechanism.

Summary

- We introduce the rescattering mechanism in heavy hadron decay.
- The wrong assumption was made in history to obtain the isospin triangle relation.
- We clarify the error, and the ITR can be obtained without any assumptions.
- We also simply discuss the quark diagram of the rescattering mechanism.
- And the triangle singularity was simply introduced.

Summary

- We introduce the rescattering mechanism in heavy hadron decay.
- The wrong assumption was made in history to obtain the isospin triangle relation.
- We clarify the error, and the ITR can be obtained without any assumptions.
- We also simply discuss the quark diagram of the rescattering mechanism.
- And the triangle singularity was simply introduced. Thanks for your attention!

Hua-Yu Jiang