Bulk transfers in JUNO
production system

Xiaomei Zhang Xianghu Zhao
14t JUNO collaboration meeting
2019.7.25

Content

JUNO computing model

JUNO production system in design

Design and architecture of transfer system
Implementation

Tests and performance

JUNO computing model in example

* The computing model hasn’t
been decided yet

— Just an example to explain
requirements for production
system

Focused on MC simulation

process which is first considered
to run in distributed computing

All the centers join MC simulation
activities
IHEP and CNAF

— Hold storage for the complete set of
data, backup for each other

Other centers

— Hold storage for part of simulation
and data, also for analysis data

Workflow and Dataflow for MC

gl Official production jobs

* Simulation jobs are distributed by
production groups to any centers

— Workflow type: detsim, elecsim, cal, rec
 Sim data produced in other centres be

copied back to IHEP or CNAF, synchronize
between IHEP and CNAF

— Dataflow type: move, replication

* Raw data would be transferred from onsite g SiM data
to IHEP, then from IHEP to other sites (CNAF) :> Raw data.

JUNO production system

* It would be time-consuming if all workflow and
dataflow are managed by hand

— Complicated procedures: split, submit, reschedule, data
registeration and upload, synchronize among sites......

— Watch status of each step and take actions for next step

* JUNO production system aims to ease the
management of workflow and dataflow
— Automatically execute workflow and dataflow in a
definable way
— All activities can be monitored centrally

— Production group can control the procedure through a
steering file or web site

An example of steering files

Keep similar configuration to the existing local job submission tools — JUNOTest
[All]

e softwareVersion =J17v1rl

e process = Positron

e prodName = JUNOProdTest

e ;site = GRID.INFN-CNAF.it CLOUD.JINRONE.ru GRID.IN2P3.fr

* outputDir = testprod/some/other/dir

* ;outputSE = ;outputMode = closest

* moveFlavor = Replication

e ;moveSourceSE = I[HEP-STORM CNAF-STORM JINR-JUNO IN2P3-DCACHE
* moveTargetSE = IHEP-STORM CNAF-STORM

[Positron]

* seed =42 ;evtmax =1 ;njobs =20

* tags=e+_0.0MeV e+_1.398MeV e+_4.460MeV e+_6.469MeV

* workDir = Positron; position = center

* workflow = detsim elecsim calib rec

* moveType = detsim elecsim calib rec

e detsim-mode = gun --particles {particle} --momentums {momentum} --positions 0 0 0

 The MC activities can be split into data processing and data management
— Data processing: detsim, elecsim, cal, rec
— Data management: move, replication, removal

Design concept of
JUNO production system

e All the activities can be chained through datasets produced

— Their input and output is closely cross-related
 The whole system plans to be designed in a data-driven way which allows

workflow and dataflow work closely together
— DIRAC transformation system provides basic architecture for these chains

— Each data processing and management is designed as a transformation module with input and

output data registered in metadata
* Only detsim is an exception without input data, controlled with job number

— Metadata in File Catalogue is a key to chain them all

detsim
data

detsim —>

replicate

—> elecsim —>

replicate

elecsim

\ /

—

cal

—

replicate

cal
data

—> rec —>

!

rec
data

|

replicate

Design of bulk transfers

 The data management part allows data-driven
data replications among sites for the produced j
MC data

: : Metadata quer
* This part can be also used as an independent Aueny

transfer system for any other official data, eg. raw
data

* Design as an independent transfer system Creaté tasks

— Register data to be transferred in File
Catalogue (FC) with metadata defined

— Transformation system (TS) create transfer

tasks based on metadata query and sent to Assidn tasks
RMS

— Reguest management system(RMS) arrange
transfer tasks in queue and sent to FTS (File FTS

Transfer Service)

— FTS takes real transfer tasks and reports back
status

Four subsystems
 DFC (Dirac File Catalogue)

* Transformation system (TS)
* Request Management System (RMS)
* File Transfer Service (FTS)

Architecture

Transformation
System
Meta InputData
Replicate
; RemoveFile
Request PutAndRegister
Task Agent RemoveReplica
Data driven task creation

Request Management
System

Request
Queue

Request

. 4

Executing

Agent

Queue transfer tasks

b

FTS
>
FTS3Manager “

:
FTS3Agent
File Catalog -
Commands “
Start tasks

DFC

e Dirac File Catalogue

— Meta catalogue
* define a group of data with same properties

— Replication catalogue
* track location of replicas among sites

e Support both static and dynamic query from transformation system

— Static query
* Get a static list of files once
— tc.addFilesToTransformation(transID['Value'], infileList)
* This file list not changed through the whole transfer process

— Dynamic query
* Get a dynamic list of files collected with metadata

* Thisfile list allow to be changed during the process, but the transformation
keep query with certain frequency
— tc.createTransformationinputDataQuery(transID['Value'], query)
— Simple query: juno_transfer=PmtCharacterization/container_data/Meassurements_DAQ
* The feature allows the transfer to be triggered as soon as the first file arrived
in the range of metadata query

Transformation system

A system for handling “repetitive work” with recipes
— i.e. create many identical tasks with a varying parameter
2 main cases:

— Production jobs: the “same” job with different parameters

— Data handling: the “same” replication or removal for a
group of data

LHCb, CTA, ILC and Bellell use it to build their own
‘Production System’ and ‘Transfer System’

In the transfer system

— Replicate, Move and Remove transformation modules
based on TS framework need to be created to handle
operations in transfers

Transformation system

Transformations
(definitions)

Log

Additional |
Parameter |

Input Data .| Input Data o Files Data Files
Query - Agent - (internal catalog)

A4

Plugins |I Tranfgg:tahon > File Tasks
DB Tables
A4
Tasks
Agents

Workflow
Task Agent

X

WMS

N

Request
Task Agent

S

RMS

TransformationAgent

— Processes the
transformations and
creates tasks given a
Transformation Plugin

InputDataAgent

— Queries the Catalogto
obtain files to be
‘transformed’

WorkflowTaskAgent

— Transforms tasks into job
workflows given a
TaskManager Plugin

RequestTaskAgent

— Transforms tasks into data
handling requests

Request Management System

* |Itis avery generic system in DIRAC that allows for
asynchronous actions execution

— typically for large scale data management operations
like replications or removals

 Two key components:

— Request Manager Service with ReqDB to handle
gueue of actions
e Accept requests from TS, also from commands
— Request Executing Agent to assign requests to the
related services and track status
* |n our cases, itis FTS service

FTS service

* File Transfer Service
— A very powerful independent multi-VO transfer system to
handle file-by-file transfers

e Can manage reliable and large scale transfers transparently between
different storages (EOS, DPM, Object Storages, STORM, dCache, CTA, ..)
and multiprotocol support (Webdav/https, GridFTP, XRootD, SRM)

* Runin client/server mode

— Widely used in WLCG, many experiments build its own transfer
system on top of it

 CMS PhEDEX, Atlas Rucio......

* Dirac interface services to FTS
— FTSManager -- keep track of the submitted FTS requests

— FTSAgent — submit FTS requests and update FC with new
replicas

Implementation

 The prototype of this system has been set up
— fts3 server has been set up
* https://fts3.ihep.ac.cn:8449/fts3/ftsmon/#/

— Other related services and agents have been installed and
configured in DIRAC

* TS, RMS, FTS interface services and agents
— Transformation modules for replication have been developed
 The necessary scripts have been released to IHEPDIRAC to

handle massive replication, removal, registeration
operations

— ihepdirac-transformation-transfer-metadata

<transferName> -t <transferType> <metadata query>
<sourceSE> <destinationSE>

https://fts3.ihep.ac.cn:8449/fts3/ftsmon/#/
https://fts3.ihep.ac.cn:8449/fts3/ftsmon/#/
https://fts3.ihep.ac.cn:8449/fts3/ftsmon/#/

Tests with raw data

e The raw data used for tests

— /junofs/PmtCharacterization/container_data/Mea
ssurements DAQ

— About 11TB, 810,420 files
* The command to start transfer

— ihepdirac-transformation-transfer-metadata
Meassurements DAQ_JINR -t Transfer-JUNO
juno_transfer=PmtCharacterization/container_dat
a/Meassurements DAQ IHEP-STORM JINR-JUNO

Monitoring

e Status of whole process can be tracked (TS monitoring)

[|
= Request: 0
31
3z
33
34
35
35
37
38
39

40

o i

41

Total s

« Individual file transfer (F

Status

Complet...

Complet...

Complet.

Complet...

Complet.

Complet...

Complet.

Complet...

Complet.

Complet...

Complet.

AgentType Type

Manual
Manual
Manual
Manual
Manual
Manual
Manual
Manual
Manual
Manual

Manual

Transfer-JUNO
Transfer-JUNO
Transfer-JUNO
Transfer-JUNO
Transfer-JUNO
Transfer-JUNO
Transfer-JUNO
Transfer-JUNO
Transfer-JUNO
Transfer-JUNO

Transfer-JUNO

MName Files
Trans_IHEP_JIMR._Size50 300
TestRegisterd 144
TestRegisterd 224
TestRegister 10 144
TestRegister 11 144
TestRegister 12 144
TestRegister 18 224
TestRegister 16 144
TestRegister21 1
PMT_Measurements_DAQ 2820
PmtCharacterization/container_data/Meassurements_DAQ 810420
Subnis Start time Running ;ime

TS.monitoring

Processed (%)

0.6
0.0

0.6

56.9
100.0
100.0
100.0
80.8

100.0

Avg. file throughput

) 1.48 1B/s

Created Total Created
o 5]

) 30

a 23

) 15

a 11

) 11

a 13

+) 10

a 1

+) 57

a 16316

Current job throughput

571 MBfs

Showing 1to 30 out of 30

‘TE DY | STAGING 1ACTVE STARTED CANCELED FALED 20FINISHED [io

File ID

+ 6668818

File State

#& smm://storn. thep, ac. on: 8444/ son/managerv? P3FN=/ juno/ TransferDat a/ THEP-STORN/ 10_nev_elect ron_120nev_laser_[. root

File Size

Throughput Remaining

2.37 IB/s -

Start Time Finish Time

2018-04-29T08:19: 177 2019-04-20T08: 26: 531

& simi//lese-dell, jinr, ru: 8443/ son/managerv2?SEN=/pnfs/ Jinr. ru/data/ june/ dirac/ juno/ TransferDat a/ TREP-STORN/ 10_nev_electron_120nev_laser_(. root

smm://storn. thep, ac. on: 8444/ son/managerv? P3FN=/ juno/ TransferDat a/ THEP-STORM/ 10_nev_elect ron_120nev_laser_?1.root

+ 6668818

1. 86 MB/s -

2018-04-29T08:19: 177 2019-04-20708: 28: 341

& simi//lese-del, jinr, ru: 8443/ son/nanagerv2?SEN=/pnfs/ Jinr, ru/dat &/ juno/ dirac/ juno/ TransferDat a/ THEP-STORN/ 10_nev_electron_120nev_laser_21. root

Staging Start

Staging End

K Loz

K Loz

Tests

* Transfers tests have been done
— From IHEP to JINR
— From IHEP, JINR to CNAF
— From IHEP, JINR, CNAF to IN2P3
 The transfer quality is good

 Some problems met because of source files problems
— Eg. Space inside file name, no permission on some files
— CNAF StoRM SE can’t accept empty files
— IN2P3 lack of space, only have 8TB

Transfer quality by Channel
96 Hours from 2019-05-19 08:00 to 2019-05-23 08:00 UTC

10
l FC:/uno/lustre/junofs/PutCharacterization/container data/Meassurements DAQ>size -1

directory: /juno/lustre/junofs/PmtCharacterization/contain Meassurements DAQ
Logical Sizes 11,055,135,441,481 Files: 810420 Directories: 3842

r80

e StorageElement Size
TORM -= |INR-JUNO

1 JTHR-JUN 55,135,441, 461 0

+40

2 TNOP3-DCACHE 4,667,421,171,629 260555
3 CNAF-STORM 11,054,929,901,206 809269
Im J THEP-STORM 11,055,135,441,481 510420

Total 37,832,0621,955,79T 2690664

1]
08:00 20:00 08:00 20:00 08:00 20:00 08:00 Griepted on 201850004 03.52.28 UTC

Performance

* The transfer speed for tests

e from IHEP-STORM -> JINR-JUNO reach ~120MB/s

e from IHEP-STORM, JINR-JINO->CNAF-STORM ~80MB/s

* from IHEP-STORM, JINR-JUNO ~40MB/s
* More tests needed to understand and improve performance
* One bottleneck met

* With dynamic query of 800,000 files, inputdata Agent

for transformation system becomes slow

Throughput by Channel
Hours from 2019-05-21 02:30 to 2019

MB/s

Conclusion

The JUNO production system are under design
and development

The prototype of Bulk transfer part has been
developed and set up

The tests with massive raw data is successful
with good quality

Further tests needed to understand more
about performance

