
Bulk transfers in JUNO
production system

Xiaomei Zhang Xianghu Zhao

14th JUNO collaboration meeting

2019.7.25

Content

• JUNO computing model

• JUNO production system in design

• Design and architecture of transfer system

• Implementation

• Tests and performance

JUNO computing model in example

• The computing model hasn’t
been decided yet
– Just an example to explain

requirements for production
system

• Focused on MC simulation
process which is first considered
to run in distributed computing

• All the centers join MC simulation
activities

• IHEP and CNAF
– Hold storage for the complete set of

data, backup for each other

• Other centers
– Hold storage for part of simulation

and data, also for analysis data

 IHEP

 IN2P3

 CNAF

MOSCOW JINR

Workflow and Dataflow for MC

• Simulation jobs are distributed by
production groups to any centers
– Workflow type: detsim, elecsim, cal, rec

• Sim data produced in other centres be
copied back to IHEP or CNAF, synchronize
between IHEP and CNAF
– Dataflow type: move, replication

• Raw data would be transferred from onsite
to IHEP, then from IHEP to other sites (CNAF) 4

onsite

Sim data

Raw data

 IHEP

 IN2P3

 CNAF

MOSCOW JINR

JUNO production system
• It would be time-consuming if all workflow and

dataflow are managed by hand
– Complicated procedures: split, submit, reschedule, data

registeration and upload, synchronize among sites……
– Watch status of each step and take actions for next step

• JUNO production system aims to ease the
management of workflow and dataflow
– Automatically execute workflow and dataflow in a

definable way
– All activities can be monitored centrally
– Production group can control the procedure through a

steering file or web site

An example of steering files
[All]

• softwareVersion = J17v1r1

• process = Positron

• prodName = JUNOProdTest

• ;site = GRID.INFN-CNAF.it CLOUD.JINRONE.ru GRID.IN2P3.fr

• outputDir = testprod/some/other/dir

• ;outputSE = ;outputMode = closest

• moveFlavor = Replication

• ;moveSourceSE = IHEP-STORM CNAF-STORM JINR-JUNO IN2P3-DCACHE

• moveTargetSE = IHEP-STORM CNAF-STORM

[Positron]

• seed = 42 ;evtmax = 1 ;njobs = 20

• tags = e+_0.0MeV e+_1.398MeV e+_4.460MeV e+_6.469MeV

• workDir = Positron; position = center

• workflow = detsim elecsim calib rec

• moveType = detsim elecsim calib rec

• detsim-mode = gun --particles {particle} --momentums {momentum} --positions 0 0 0

Keep similar configuration to the existing local job submission tools – JUNOTest

Design concept of
JUNO production system

• The MC activities can be split into data processing and data management
– Data processing: detsim, elecsim, cal, rec
– Data management: move, replication, removal

• All the activities can be chained through datasets produced
– Their input and output is closely cross-related

• The whole system plans to be designed in a data-driven way which allows
workflow and dataflow work closely together
– DIRAC transformation system provides basic architecture for these chains
– Each data processing and management is designed as a transformation module with input and

output data registered in metadata
• Only detsim is an exception without input data, controlled with job number

– Metadata in File Catalogue is a key to chain them all

detsim elecsim cal rec

replicate

detsim
 data

elecsim
 data

 cal
 data

 rec
 data

replicate replicate replicate

Data
center

Data
center

Design of bulk transfers
• The data management part allows data-driven

data replications among sites for the produced
MC data

• This part can be also used as an independent
transfer system for any other official data, eg. raw
data

• Design as an independent transfer system
– Register data to be transferred in File

Catalogue (FC) with metadata defined
– Transformation system (TS) create transfer

tasks based on metadata query and sent to
RMS

– Request management system(RMS) arrange
transfer tasks in queue and sent to FTS (File
Transfer Service)

– FTS takes real transfer tasks and reports back
status

 FC

 TS

RMS

Metadata query

Create tasks

Assign tasks

 FTS

Architecture
Four subsystems
• DFC (Dirac File Catalogue)
• Transformation system (TS)
• Request Management System (RMS)
• File Transfer Service (FTS)

DFC
• Dirac File Catalogue

– Meta catalogue
• define a group of data with same properties

– Replication catalogue
• track location of replicas among sites

• Support both static and dynamic query from transformation system
– Static query

• Get a static list of files once
– tc.addFilesToTransformation(transID['Value'], infileList)

• This file list not changed through the whole transfer process

– Dynamic query
• Get a dynamic list of files collected with metadata
• This file list allow to be changed during the process, but the transformation

keep query with certain frequency
– tc.createTransformationInputDataQuery(transID['Value'], query)
– Simple query: juno_transfer=PmtCharacterization/container_data/Meassurements_DAQ

• The feature allows the transfer to be triggered as soon as the first file arrived
in the range of metadata query

Transformation system

• A system for handling “repetitive work” with recipes
– i.e. create many identical tasks with a varying parameter

• 2 main cases:
– Production jobs: the “same” job with different parameters
– Data handling: the “same” replication or removal for a

group of data

• LHCb, CTA, ILC and BelleII use it to build their own
‘Production System’ and ‘Transfer System’

• In the transfer system
– Replicate, Move and Remove transformation modules

based on TS framework need to be created to handle
operations in transfers

Transformation system

• TransformationAgent
– Processes the

transformations and
creates tasks given a
Transformation Plugin

• InputDataAgent
– Queries the Catalog to

obtain files to be
‘transformed’

• WorkflowTaskAgent
– Transforms tasks into job

workflows given a
TaskManager Plugin

• RequestTaskAgent
– Transforms tasks into data

handling requests

Request Management System
• It is a very generic system in DIRAC that allows for

asynchronous actions execution
– typically for large scale data management operations

like replications or removals

• Two key components:
– Request Manager Service with ReqDB to handle

queue of actions
• Accept requests from TS, also from commands

– Request Executing Agent to assign requests to the
related services and track status
• In our cases, it is FTS service

FTS service

• File Transfer Service
– A very powerful independent multi-VO transfer system to

handle file-by-file transfers
• Can manage reliable and large scale transfers transparently between

different storages (EOS, DPM, Object Storages, STORM, dCache, CTA, ..)
and multiprotocol support (Webdav/https, GridFTP, XRootD, SRM)

• Run in client/server mode

– Widely used in WLCG, many experiments build its own transfer
system on top of it
• CMS PhEDEx, Atlas Rucio……

• Dirac interface services to FTS
– FTSManager -- keep track of the submitted FTS requests
– FTSAgent – submit FTS requests and update FC with new

replicas

Implementation

• The prototype of this system has been set up
– fts3 server has been set up

• https://fts3.ihep.ac.cn:8449/fts3/ftsmon/#/

– Other related services and agents have been installed and
configured in DIRAC
• TS, RMS, FTS interface services and agents

– Transformation modules for replication have been developed

• The necessary scripts have been released to IHEPDIRAC to
handle massive replication, removal, registeration
operations
– ihepdirac-transformation-transfer-metadata
 <transferName> -t <transferType> <metadata query>
<sourceSE> <destinationSE>

https://fts3.ihep.ac.cn:8449/fts3/ftsmon/#/
https://fts3.ihep.ac.cn:8449/fts3/ftsmon/#/
https://fts3.ihep.ac.cn:8449/fts3/ftsmon/#/

Tests with raw data

• The raw data used for tests

– /junofs/PmtCharacterization/container_data/Mea
ssurements_DAQ

– About 11TB, 810,420 files

• The command to start transfer

– ihepdirac-transformation-transfer-metadata
Meassurements_DAQ_JINR -t Transfer-JUNO
juno_transfer=PmtCharacterization/container_dat
a/Meassurements_DAQ IHEP-STORM JINR-JUNO

Monitoring
• Status of whole process can be tracked (TS monitoring)

• Individual file transfer (FTS monitoring)

Tests
• Transfers tests have been done

– From IHEP to JINR
– From IHEP, JINR to CNAF
– From IHEP, JINR, CNAF to IN2P3

• The transfer quality is good
• Some problems met because of source files problems

– Eg. Space inside file name, no permission on some files
– CNAF StoRM SE can’t accept empty files
– IN2P3 lack of space, only have 8TB

Performance

• The transfer speed for tests
• from IHEP-STORM -> JINR-JUNO reach ~120MB/s
• from IHEP-STORM, JINR-JINO->CNAF-STORM ~80MB/s
• from IHEP-STORM, JINR-JUNO ~40MB/s

• More tests needed to understand and improve performance
• One bottleneck met

• With dynamic query of 800,000 files, inputdata Agent
for transformation system becomes slow

Conclusion

• The JUNO production system are under design
and development

• The prototype of Bulk transfer part has been
developed and set up

• The tests with massive raw data is successful
with good quality

• Further tests needed to understand more
about performance

