Predictive Scotogenic Model with Flavor Dependent Symmetry

Zhi-Long Han

University of Jinan

December 8, 2019

Based on 1901.07798,1908.07192,1911.00819

Zhi-Long Han (University of Jinan) Predictive Scotogenic Model with Flavor Depe

4 D N 4 B N 4 B N 4 B

Motivation

- BSM hints: Neutrino Mass and Dark matter \rightarrow Scotogenic Model Hep-ph/0601225
- Flavor structure in $M_{\nu} \rightarrow$ Texture-zeros (\bigstar 1108.4534)

Discrete Flavor symmetry (Ψ hep-ph/0106291) U(1) Gauge Symmetry (Ψ 1203.4591)

- Scotogenic with Flavor structure
 - A₄ Model (№1206.1570)
 - Texture *C* with $U(1)_{L_{\mu}-L_{\tau}}$ symmetry (\pounds 1501.01530)
 - Texture A_1 with $U(1)_{xB_3-xL_e-L_{\mu}+L_{\tau}}$ symmetry (\bigstar 1701.05788)
 - Two texture-zeros with $U(1)_{B-2L_{\alpha}-L_{\beta}}$ symmetry (\bigstar 1806.09957)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Classic Unflavored Scotogenic Model

- Three right-handed fermion singlets $N_{Ri}(i = 1 \sim 3)$
- An inert scalar doublet field $\eta = (\eta^+, \eta^0)$
- A discrete Z₂ symmetry is imposed for the new fields

The relevant interactions for neutrino masses generation

$$\mathcal{L} \supset h_{\alpha i} \overline{L}_{\alpha} \tilde{\eta} N_{Ri} + \frac{1}{2} M_N \overline{N}_R^c N_R + \frac{1}{2} \lambda (\Phi^{\dagger} \eta)^2 + \text{h.c.}.$$
(1)

If we assume $m_0^2 \equiv (m_R^2 + m_I^2)/2 \gg M_{Nk}^2,\,M_{
u}$ are then given by

$$(M_{\nu})_{\alpha\beta} \simeq -\frac{1}{32\pi^2} \frac{\lambda v^2}{m_0^2} \sum_k h_{\alpha i} V_{ik} h_{\beta j} V_{jk} M_{Nk}$$

$$= -\frac{1}{32\pi^2} \frac{\lambda v^2}{m_0^2} (h M_N h^T)_{\alpha\beta}$$
(2)

The structure of M_{ν} is determined by Yukawa h and mass matrix M_{N} .

Classic Unflavored Scotogenic Model

The neutrino mass matrix M_{ν} is diagonalized as

$$U_{\mathsf{PMNS}}^T M_{\nu} U_{\mathsf{PMNS}} = \hat{m}_{\nu} \equiv \mathsf{diag}(m_1, m_2, m_3), \tag{3}$$

where U_{PMNS} is the neutrino mixing matrix denoted as

$$U_{\text{PMNS}} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13} \\ -c_{12}s_{23}s_{13} - s_{12}c_{23}e^{-i\delta} & -s_{12}s_{23}s_{13} + c_{12}c_{23}e^{-i\delta} & s_{23}c_{13} \\ -c_{12}c_{23}s_{13} + s_{12}s_{23}e^{-i\delta} & -s_{12}c_{23}s_{13} - c_{12}s_{23}e^{-i\delta} & c_{23}c_{13} \end{pmatrix} \times \operatorname{diag}(e^{i\rho}, e^{i\sigma}, 1)$$

$$(4)$$

Here, we define $c_{ij} = \cos \theta_{ij}$ and $s_{ij} = \sin \theta_{ij}$ (ij = 12, 23, 13) for short, δ is the Dirac phase and ρ, σ are the two Majorana phases. One can denote U_{PMNS} as $U_{\text{PMNS}} = U \times P$. The neutrino mass matrix is then

$$M_{\nu} = U_{\mathsf{PMNS}} \hat{m}_{\nu} U_{\mathsf{PMNS}}^{T}.$$
 (5)

Gauged $U(1)_{B-2L_{\alpha}-L_{\beta}}$ Scotogenic Model(1901.07798)

Group	Lepton Fields						Scalar Fields						
	L_{α}	$\ell_{\alpha R}$	L_{β}	$\ell_{\beta R}$	L_{γ}	$\ell_{\gamma R}$	N_{R1}	N_{R2}	Φ	η_1	η_2	S_1	S_2
$SU(2)_L$	2	1	2	1	2	1	0	0	2	2	2	1	1
$U(1)_Y$	$-\frac{1}{2}$	-1	$-\frac{1}{2}$	-1	$-\frac{1}{2}$	-1	1	1	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	0	0
Z_2	+	+	+	+	+	+	_	_	+	-	_	+	+
$U(1)_{B-2L_{\alpha}-L_{\beta}}$	-2	-2	-1	-1	0	0	-1	-2	0	-1	0	2	3

TABLE I. Particle content and corresponding charge assignments.

Predictive Scotogenic Model with Flavor Depe Zhi-Long Han (University of Jinan) December 8, 2019 • The relevant scalar interactions for the loop-induced neutrino masses is given by

$$\mathcal{L}_{S} \supset \frac{\lambda}{\Lambda} (\Phi^{\dagger} \eta_{1})^{2} S_{1} + \lambda' (\Phi^{\dagger} \eta_{2})^{2}$$
(6)

One can achieve the effective operator by simply adding a new scalar singlet $\rho \sim (1, 0, 1, -)$ so that in scalar sector $\mathcal{L}_S \supset \mu(\Phi^{\dagger}\eta_1)\rho^{\dagger} + \mu'\rho^2 S_1$ is allowed.

•Under $U(1)_{B-2L_e-L_{\tau}}$, the flavor dependent Yukawa interactions are given by

$$-\mathcal{L}_{Y} = h_{\mu 1} \bar{L}_{\mu} \tilde{\eta}_{1} N_{R1} + h_{\tau 2} \bar{L}_{\tau} \tilde{\eta}_{1} N_{R2} + f_{\tau 1} \bar{L}_{\tau} \tilde{\eta}_{2} N_{R1} + f_{e2} \bar{L}_{e} \tilde{\eta}_{2} N_{R2}$$
(7)
+ $y_{11} \overline{N_{R1}^{c}} N_{R1} S_{1} + y_{12} (\overline{N_{R1}^{c}} N_{R2} + \overline{N_{R2}^{c}} N_{R1}) S_{2} + \text{h.c.}.$

• The texture of above Yukawa couplings are

$$h = \begin{pmatrix} 0 & 0 \\ h_{\mu 1} & 0 \\ 0 & h_{\tau 2} \end{pmatrix}, \quad f = \begin{pmatrix} 0 & f_{e 2} \\ 0 & 0 \\ f_{\tau 1} & 0 \end{pmatrix}, \quad y = \begin{pmatrix} y_{11} & y_{12} \\ y_{12} & 0 \end{pmatrix}.$$
 (8)

4 D N 4 B N 4 B N 4 B N

Assuming $\Lambda = \langle S_1 \rangle$, $\lambda/m_{\eta_1}^2 = \lambda'/m_{\eta_2}^2$, and all the element in M_N to be equal, then

$$M_{\nu} \propto \begin{pmatrix} 0 & 0 & f_{e2}f_{\tau 1} \\ 0 & h_{\mu 1}^2 & h_{\mu 1}h_{\tau 2} \\ f_{e2}f_{\tau 1} & h_{\mu 1}h_{\tau 2} & f_{\tau 1}^2 \end{pmatrix}.$$
 (9)

Texture of M_{ν}		Group	Tex	ture of M_{ν}	Group	Status	
	$\left(\begin{array}{cc} 0 & 0 \\ \end{array}\right)$		1	$\left(0 \times 0 \right)$			
$A_1:$	$0 \times \times$	$U(1)_{B-2L_e-L_\tau}$	A_2 :	\times \times \times	$U(1)_{B-2L_e-L_{\mu}}$	Allowed	
	$(\times \times \times)$			$\left(0 \times \times \right)$			
B_3 :	$\left(\times 0 \times \right)$		1	$(\times \times 0)$			
	$0 0 \times$	$U(1)_{B-2L_{\mu}-L_{\tau}}$	B_4 :	\times \times \times	$U(1)_{B-2L_{\tau}-L_{\mu}}$	Marginally Allowed	
	$(\times \times \times)$			$\left(0 \times 0 \right)$			
	$(\times \times \times)$			$(\times \times \times)$			
$D_1:$	$\times 0 0$	$U(1)_{B-2L_{\mu}-L_{e}}$	$D_2:$	$\times \times 0$	$U(1)_{B-2L_{\tau}-L_{e}}$	Excluded	
	$\left(\times 0 \times \right)$			$(\times 0 0)$			

TABLE I. Two texture-zeros and corresponding $U(1)_{B-2L_{\alpha}-L_{\beta}}$ symmetry. Here, \times denotes a nonzero matrix element. (¥1806.06785)

Zhi-Long Han (University of Jinan) Predictive Scotogenic Model with Flavor Depe

Gauged $U(1)_{L_{\mu}-L_{\tau}}$ Scotogenic Model(1908.07192)

The corresponding Yukawa coupling h and mass matrix M_N are

$$h = \operatorname{diag}(h_e, h_\mu, h_\tau), \quad \mathcal{M}_N = \begin{pmatrix} M_{ee} & \frac{v_S}{\sqrt{2}}h_{e\mu} & \frac{v_S}{\sqrt{2}}h_{e\tau} \\ \frac{v_S}{\sqrt{2}}h_{e\mu} & 0 & M_{\mu\tau}e^{i\theta_R} \\ \frac{v_S}{\sqrt{2}}h_{e\tau} & M_{\mu\tau}e^{i\theta_R} & 0 \end{pmatrix}$$
(10)

 M_{ν} has same structure with M_N , i.e., Texture C.

We consider this model to explain two anomalies simultaneously:

• If Z' also has flavor violating b - s coupling, then Z' would contribute to the transition $b \rightarrow s\mu^+\mu^-$, hence explain the $R_{K^{(*)}}$ anomaly.

•Annihilation channels $NN \rightarrow Z'Z'$ and $NN \rightarrow Z'H_0(\rightarrow Z'Z')$ channel could be used to interpret the AMS-02 positron excess.

Gauged $U(1)_{B-3L_{\alpha}}$ Scotogenic Model(1911.00819)

The interactions relevant to lepton mass generation are given by

$$-\mathcal{L} \supset f_{\alpha\beta}\bar{L}_{\alpha}\Phi\ell_{\beta R} + h_{\alpha i}\bar{L}_{\alpha}\eta^{c}N_{Ri} + \frac{M_{Nij}}{2}N_{Ri}N_{Rj} + \frac{1}{2}\lambda(H^{\dagger}\eta)^{2} + \text{hc.}$$
(11)

Under $U(1)_{B-3L_{\tau}}$ gauge symmetry, the texture of lepton Yukawa couplings are given by

$$f = \begin{pmatrix} f_{ee} & f_{e\mu} & 0\\ f_{\mu e} & f_{\mu\mu} & 0\\ 0 & 0 & f_{\tau\tau} \end{pmatrix} h = \begin{pmatrix} h_{e1} & h_{e2} & 0\\ h_{\mu 1} & h_{\mu 2} & 0\\ 0 & 0 & h_{\tau 3} \end{pmatrix} M_{N} = \begin{pmatrix} M_{11} & M_{12} & \frac{v_{S}}{\sqrt{2}}y_{13}\\ - & M_{22} & \frac{v_{S}}{\sqrt{2}}y_{23}\\ - & - & 0 \end{pmatrix}$$

The texture structure of M_l and M_{ν} are of the form

$$M_{l} \propto \begin{pmatrix} f_{ee} & f_{e\mu} & 0\\ f_{\mu e} & f_{\mu \mu} & 0\\ 0 & 0 & f_{\tau \tau} \end{pmatrix} \qquad M_{\nu} \propto \begin{pmatrix} (M_{\nu})_{11} & (M_{\nu})_{12} & (M_{\nu})_{12}\\ - & (M_{\nu})_{22} & (M_{\nu})_{23}\\ - & - & 0 \end{pmatrix}.$$

December 8, 2019

9/24

Pattern	Group	Texture of M_l Texture of M_{ν}	Texture of M_{ν}			
A	$U(1)_{B-3Le}$	$\left(\begin{array}{ccc} \times & 0 & 0 \\ 0 & \times & \times \\ 0 & \times & \times \end{array}\right) \left \begin{array}{ccc} 0 & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{array}\right)$				
В	$U(1)_{B-3L_{\mu}}$	$\left(\begin{array}{ccc} \times & 0 & \times \\ 0 & \times & 0 \\ \times & 0 & \times \end{array}\right) \left(\begin{array}{ccc} \times & \times & \times \\ \times & 0 & \times \\ \times & \times & \times \end{array}\right)$				
с	$U(1)_{B-3L_{\tau}}$	$\left(\begin{array}{ccc} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{array}\right) \left(\begin{array}{ccc} \times & \times & \times \\ \times & \times & \times \\ \times & \times & 0 \end{array}\right)$				

Table: Possible mass textures of charged leptons (M_l) and neutrinos (M_ν), where \times denotes a non-zero entry.

Patten	Group	Hierarchy	Oscillation@ 3σ	Oscillation@1 σ	$\sum_{\nu} < 0.12 \text{ eV}$	$M_{ee}(eV)$
Δ	$U(1)$ p_{-2}	NH	\checkmark	\checkmark	\checkmark	0
~	$O(1)B-3L_e$	IH	×	-	-	-
В	$U(1)_{B-3L_{\mu}}$	NH	\checkmark	×	×	$\gtrsim 0.05$
		IH	\checkmark	\checkmark	\checkmark	$\gtrsim 0.015$
С	$U(1)_{B-3L_{\tau}}$	NH	$\overline{\mathbf{v}}$	$\overline{\mathbf{v}}$	×	$\gtrsim 0.033$
		IH	\checkmark	\checkmark	\checkmark	$\gtrsim 0.015$

Table: Some main results of the one texture-zeros in the $U(1)_{B-3L_{\alpha}}$ scotogenic model.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Neutrino Mixing

• The Method: Define $\lambda_1 = m_1 e^{2i\rho}$, $\lambda_2 = m_2 e^{2i\sigma}$, $\lambda_3 = m_3$. Let $(M_{\nu})_{ab} = (M_{\nu})_{\alpha\beta} = 0$, then one can obtain

$$\frac{\lambda_{1}}{\lambda_{3}} = \frac{U_{a3}U_{b3}U_{\alpha2}U_{\beta2} - U_{a2}U_{b2}U_{\alpha3}U_{\beta3}}{U_{a2}U_{b2}U_{\alpha1}U_{\beta1} - U_{a1}U_{b1}U_{\alpha2}U_{\beta2}}$$

$$\frac{\lambda_{2}}{\lambda_{3}} = \frac{U_{a1}U_{b1}U_{\alpha3}U_{\beta3} - U_{a3}U_{b3}U_{\alpha1}U_{\beta1}}{U_{a2}U_{b2}U_{\alpha1}U_{\beta1} - U_{a1}U_{b1}U_{\alpha2}U_{\beta2}},$$
(13)

from which two neutrino mass ratios are $\xi = \frac{m_1}{m_3} = \left| \frac{\lambda_1}{\lambda_3} \right|, \zeta = \frac{m_2}{m_3} = \left| \frac{\lambda_2}{\lambda_3} \right|,$ and the two Majorana phases are $\rho = \frac{1}{2} \arg\left(\frac{\lambda_1}{\lambda_3} \right), \sigma = \frac{1}{2} \arg\left(\frac{\lambda_2}{\lambda_3} \right).$ The Dirac CP-violating phase δ is constrained by

$$R_{\nu} = \frac{\delta m^2}{|\Delta m^2|} = \frac{2(\zeta^2 - \xi^2)}{|2 - (\zeta^2 + \xi^2)|}$$
(15)

The neutrino mass spectrum is

$$m_3 = \sqrt{\delta m^2} / \sqrt{\zeta^2 - \xi^2}, m_2 = m_3 \zeta, m_1 = m_3 \xi$$
 (16)

Neutrino Mixing

Following results are based on $U(1)_{B-2L_e-L_{\tau}}$

Figure: Allowed samples of A_1 texture with neutrino oscillation data in 3σ .

 $m_1 \sim 0.007 \text{ eV}, m_2 \sim 0.01 \text{ eV}, m_3 \approx \sqrt{\Delta m^2} \sim 0.05 \text{ eV}, \sum m_i \sim 0.07 \text{ eV}.$

12/24

Zhi-Long Han (University of Jinan) Predictive Scotogenic Model with Flavor Depe December 8, 2019

Neutrino Mixing

Figure: Allowed samples of A_1 texture with neutrino oscillation data in 3σ .

 $\delta \in [0.75\pi, 1.77\pi],\,
ho pprox rac{\delta}{2}$, $\sigma pprox rac{\delta}{2} - rac{\pi}{2}$

Analytic and predicted neutrino mass matrixes are

$$M_{\nu} \propto \begin{pmatrix} 0 & 0 & f_{e2}f_{\tau 1} \\ 0 & h_{\mu 1}^2 & h_{\mu 1}h_{\tau 2} \\ f_{e2}f_{\tau 1} & h_{\mu 1}h_{\tau 2} & f_{\tau 1}^2 \end{pmatrix}, M_{\nu} = \begin{pmatrix} 0 & 0 & 0.0110 \\ 0 & 0.0293 & 0.0219 \\ 0.0110 & 0.0219 & 0.0256 \end{pmatrix} \text{eV}$$

The neutrino oscillation data requires

$$\frac{h_{\tau 2}}{h_{\mu 1}} : \frac{f_{\tau 1}}{h_{\mu 1}} : \frac{f_{e 2}}{h_{\mu 1}} = \frac{(M_{\nu})_{\mu \tau}}{(M_{\nu})_{\mu \mu}} : \sqrt{\frac{(M_{\nu})_{\tau \tau}}{(M_{\nu})_{\mu \mu}}} : \frac{(M_{\nu})_{e \tau}}{\sqrt{(M_{\nu})_{\mu \mu}(M_{\nu})_{\tau \tau}}}$$
(17)
$$\simeq 0.745 : 0.933 : 0.401.$$

14/24

We can take $h_{\mu 1}$ as free parameters, and the overall neutrino mass scale is then determined by $\lambda v^2 M_N h_{\mu 1}^2 / (32\pi^2 m_0^2) \approx 0.0293$ eV.

 $(M_{\nu})_{ee} = 0$, effective Majorana neutrino mass $\langle m \rangle_{ee} = 0$, only normal hierarchy is allowed.

Lepton Flavor Violation

The flavor dependent Yukawa interactions

$$-\mathcal{L}_{\mathbf{Y}} \supset h_{\mu 1} \bar{L}_{\mu} \tilde{\eta}_{1} N_{R1} + h_{\tau 2} \bar{L}_{\tau} \tilde{\eta}_{1} N_{R2} + f_{\tau 1} \bar{L}_{\tau} \tilde{\eta}_{2} N_{R1} + f_{e 2} \bar{L}_{e} \tilde{\eta}_{2} N_{R2}$$
(18)

indicate no $\mu \to e\gamma$. $\tau \to \mu(e)\gamma$ is mediated by $\eta_1^{\pm}(\eta_2^{\pm})$ with branching ratios

$$\begin{split} \mathsf{BR}(\tau \to \mu \gamma) &= \frac{3\alpha}{64\pi G_F^2} \left| \sum_{i=1}^2 \frac{(h_{\mu 1} V_{1i})(h_{\tau 2} V_{2i})^*}{M_{\eta_1}^2} F\left(\frac{M_{Ni}^2}{M_{\eta_1}^2}\right) \right|^2 \mathsf{BR}(\tau \to \mu \nu_\tau \bar{\nu}_\mu), \\ \mathsf{BR}(\tau \to e\gamma) &= \frac{3\alpha}{64\pi G_F^2} \left| \sum_{i=1}^2 \frac{(f_{e2} V_{2i})(f_{\tau 1} V_{1i})^*}{M_{\eta_2}^2} F\left(\frac{M_{Ni}^2}{M_{\eta_2}^2}\right) \right|^2 \mathsf{BR}(\tau \to e\nu_\tau \bar{\nu}_e), \end{split}$$

where the loop function F(x) is

$$F(x) = \frac{1 - 6x + 3x^2 + 2x^3 - 6x^2 \ln x}{6(1 - x)^4}.$$
 (19)

15/24

Lepton Flavor Violation

Figure: Predictions for $\tau \to \mu \gamma$ (left) and $\tau \to e \gamma$ (right) with corresponding current bound and future sensitivity. We have fixed $M_{N_1} = 200$ GeV.

In the limit of degenerate M_N , we have

$$\mathsf{BR}(\tau \to \ell \gamma) \propto \left| \sum_{i=1}^{2} V_{1i} V_{2i}^{*} \right|^{2} = |(VV^{\dagger})_{12}|^{2} = 0, \tag{20}$$

December 8, 2019

16/24

Zhi-Long Han (University of Jinan)

Predictive Scotogenic Model with Flavor Depe

Muon Anomalous Magnetic Moment

 $\bar{L}_{\mu}\tilde{\eta}_{1}N_{i}$ contributes to Δa_{μ} as

$$\Delta a_{\mu} = -\sum_{i=1}^{2} \frac{|h_{\mu 1} V_{1i}|^2 M_{\mu}^2}{16\pi^2 M_{\eta_1}^2} F\left(\frac{M_{Ni}^2}{M_{\eta_1}^2}\right)$$

The total contribution is negative, but the observed discrepancy $\Delta a_{\mu} = a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}} =$ $(261 \pm 78) \times 10^{-11}$ is positive. We assume the contribution do not larger than EW uncertainty,i.e., $|\Delta a_{\mu}| \lesssim 10^{-10}$.

Figure: Predictions for $|\Delta a_{\mu}|$. In this figures, we have fix $M_{N_1} = 200$ GeV.

17/24

In general annihilation channels $N_1N_1 \rightarrow \ell^+\ell^-, \bar{\nu}\nu$ are tightly constrained by non-observation of LFV, especially $\mu \rightarrow e\gamma$. The annihilation cross section

$$\begin{split} \sigma v_{\rm rel} &= \sum_{\alpha,\beta} \left| h'_{\alpha 1} h'^*_{\beta 1} + f'_{\alpha 1} f'^*_{\beta 1} \right|^2 \\ &\times \frac{r^2 (1 - 2r + 2r^2)}{24\pi M_{N_1}^2} v_{\rm rel}^2. \end{split}$$

 $\langle \sigma v_{\rm rel}
angle = a + 6 b/x_f.$ Freeze-out parameter $x_f = M_{N_1}/T_f$

$$x_f = \ln\left(\frac{0.038M_{\mathsf{Pl}}M_{N_1}\langle\sigma v_{\mathsf{rel}}\rangle}{\sqrt{g_*x_f}}\right)$$

Figure: Predicted relic density as a function of m_{η} , where we have fix $M_{N_1} = 200$ GeV.

A # > A = > A =

18/24

The relic density

$$\Omega h^2 = \frac{1.07 \times 10^9 \text{GeV}^{-1}}{M_{\text{Pl}}} \frac{x_f}{\sqrt{g_*}} \frac{1}{a + 3b/x_f},$$
(21)

The spin-independent DM-nucleon scattering cross section is dominantly mediated by scalars h, H_1

$$\sigma^{SI} = \frac{4}{\pi} \left(\frac{M_p M_{N_1}}{M_p + M_{N_1}} \right)^2 f_p^2,$$
(22)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

where M_p is the proton mass and the hadronic matrix element f_p

$$\frac{f_p}{M_p} = \sum_{q=u,d,s} f_{T_q}^p \frac{\alpha_q}{M_q} + \frac{2}{27} \left(1 - \sum_{q=u,d,s} f_{T_q}^p \right) \sum_{q=c,b,t} \frac{\alpha_q}{M_q}.$$
 (23)

The effective vertex

$$\frac{\alpha_q}{M_q} = -\frac{y_{N_1}}{\sqrt{2}\nu}\sin 2\alpha \left(\frac{1}{M_h^2} - \frac{1}{M_{H_1}^2}\right),$$

the parameters f_{Tq}^p are evaluated as $f_{Tu}^p = 0.020 \pm 0.004$, $f_{Td}^p = 0.026 \pm 0.005$ and $f_{Ts}^p = 0.118 \pm 0.062$. We have set $M_{H_1} = 500$ GeV and $v_S = 10$ TeV.

Figure: Spin-independent cross section as a function of M_{N_1} . The black solid and dashed line correspond to current XENON1T and future LZ limits.

Figure: Combined results for the Yukawa-portal DM.

LHC constraint comes from $pp \rightarrow \ell^+ \ell^- + \not{E}_T$.

Collider Signature

•The gauge boson Z' associated with $U(1)_{B-2L_e-L_{\tau}}$ Considering the heavy Z' limit, its partial decay width into fermion and

scalar pairs are given by

$$\Gamma(Z' \to f\bar{f}) = \frac{M_{Z'}}{24\pi} g'^2 N_C^f (Q_{fL}^2 + Q_{fR}^2),$$
(24)
$$\Gamma(Z' \to SS^*) = \frac{M_{Z'}}{48\pi} g'^2 Q_S^2,$$
(25)

q ar q	e^+e^-	$\mu^+\mu^-$	$\tau^+\tau^-$	$\nu\nu$	NN	H_1H_1
0.154	0.308	0	0.077	0.192	0.192	0.077

Table: Decay branching ratio of $U(1)_{B-2L_e-L_\tau}$ gauge boson Z', where we have show the lepton flavor individually.

$$\mathsf{BR}(Z' \to b\bar{b}) : \mathsf{BR}(Z' \to e^+e^-) : \mathsf{BR}(Z' \to \mu^+\mu^-) : \mathsf{BR}(Z' \to \tau^+\tau^-) = \frac{1}{3} : 4 : 0 : 1$$

Collider Signature

Figure: Left pattern: predicted cross section ratios in $U(1)_{B-2L_e-L_{\tau}}$ and corresponding limit from LHC. Right pattern: allowed parameter space in the $g'-M_{Z'}$ plane.

$$R_{\sigma} = \frac{\sigma(pp \to Z' + X \to e^+e^- + X)}{\sigma(pp \to Z + X \to e^+e^- + X)}.$$
(26)

23/24

Zhi-Long Han (University of Jinan) Predictive Scotogenic Model with Flavor Deputy December 8, 2019

Summary

• Texture-zeros in the scotogenic model can be realised with flavor dependent gauge symmetry.

$$U(1)_{B-2L_{\alpha}-L_{\beta}}, U(1)_{L_{\mu}-L_{\tau}}, U(1)_{B-3L_{\alpha}}$$

- Texture A_1 for $U(1)_{B-2L_e-L_\tau}$
 - $\langle m_{ee}
 angle = 0$, no neutrinoless double beta decay
 - $m_1 \sim 0.007$ eV, $m_2 \sim 0.01$ eV, $m_3 \approx \sim 0.05$ eV, then $\sum m_i \sim 0.07$ eV
 - Yukawa couplings are also predicted by neutrino oscillation

$$\frac{h_{\tau 2}}{h_{\mu 1}}:\frac{f_{\tau 1}}{h_{\mu 1}}:\frac{f_{e 2}}{h_{\mu 1}}\simeq 0.745:0.933:0.401.$$

- No $\mu \rightarrow e\gamma$, $\tau \rightarrow \mu(e)\gamma$ are suppressed.
- Flavor dependent Z'

 $\mathsf{BR}(Z' \to b\bar{b}) : \mathsf{BR}(Z' \to e^+e^-) : \mathsf{BR}(Z' \to \mu^+\mu^-) : \mathsf{BR}(Z' \to \tau^+\tau^-) = \frac{1}{3} : 4 : 0 : 1$

(I) > (A) > (A) > (A) > (A)