

Probing dark matter at e^+e^- colliders

dayu@ahu.edu.cn

Zuowei Liu, **Yu Zhang**, 1808.00983, PRD Zuowei Liu, Yong-Heng Xu, **Yu Zhang**, 1903.12114, JHEP Jinhan Liang, Zuowei Liu, Yue Ma,**Yu Zhang**, 1909.06847 **Yu Zhang**, et. al., 1907.07046, PRD

第三届北京师范大学暗物质研讨会

珠海 2019年12月8日

Robing dark matter at e^+e^- colliders

dayu@ahu.edu.cn

Zuowei Liu, **Yu Zhang**, 1808.00983, PRD Zuowei Liu, Yong-Heng Xu, **Yu Zhang**, 1903.12114, JHEP Jinhan Liang, Zuowei Liu, Yue Ma,**Yu Zhang**, 1909.06847 **Yu Zhang**, et. al., 1907.07046, PRD

第三届北京师范大学暗物质研讨会

珠海 2019年12月8日

Outline

- e⁺e⁻ colliders
- Millicharge DM models at BESIII/STCF/Belle2/ Babar/CEPC
- $Z' \, \mathrm{DM}$ models at CEPC
- DM effective operators at CEPC
- Dark photon invisible decay at BESIII/STCF
- Summary

e⁺e⁻ colliders

BEPCII/BESIII

Satellite view of BEPCII /BESIII

BESIII	Bea
detector	Des
	Op
	Acł
	Dat

Beam energy:	1.
Designed luminosity:	1.
Optimum energy:	1.
Achieved luminosity:	1.
Data taken from:	2

1.0-2.3 GeV 1.00×10³³ cm⁻²s⁻¹ 1.89 GeV 1.00×10³³ cm⁻²s⁻¹ 2009

South R

主漂移室 (MDC) : $|\cos \theta| < 0.93$

飞行时间计数器 (TOF): $|\cos \theta| < 0.83$ 0.85 < $|\cos \theta| < 0.95$ 电磁量能器 (EMC): $|\cos \theta| < 0.83$ 0.85 < $|\cos \theta| < 0.93$

STCF

Super Tau-Charm Facility (STCF)

- Peak luminosity 0.5-1×10³⁵ cm⁻²s⁻¹ at 4 GeV
- **D** Energy range $E_{cm} = 2-7GeV$
- Polarization available on electron beam (Phase II)
- Basic Features of machine :
 - Symmetric machine with dual-ring
 - Large Piwinski angle collision + crabbed waist solution for the IR
 - Siberia snake for polarization
 - Total cost 4B RMB

From H. Peng @CHARM18

PEP-II/BaBar

The BaBar detector was built at <u>SLAC</u> to study the millions of B mesons produced by the <u>PEP-II</u> storage ring.

PEP-II/BaBar

PEP-II Records

Peak Luminosity

Last update: April 8, 2008

12.069×10³³ cm⁻²sec⁻¹ 1722 bunches 2900 mA LER 1875 mA HER

August 16, 2006

Integration records of delivered luminosity

Best shift (8 brs 0:00 08:00 16:00)	339.0 pb ⁻¹	Aug 16, 2006
Best 3 shifts in a row	910.7 pb ⁻¹	Jul 2-3, 2006
Best day	858.4 pb ⁻¹	Aug 19, 2007
Best 7 days (0:00 to 24:00)	5.411 fb ⁻¹	Aug 14-Aug 20, 2007
Best week (Sun 0:00 to Sat 24:00)	5.137 fb ⁻¹	Aug 12-Aug 18, 2007
Peak HER current	2069 mA	Feb 29, 2008
Peak LER current	3213 mA	Apr 7, 2008
Best 30 days	19.776 fb ⁻¹	Aug 5 – Sep 3, 2007
Best month	19.732 fb ⁻¹	August 2007
Total delivered	557 fb^{-1}	

PEP-II turned off April 7, 2008

SuperKEKB/Belle-II

CEPC

Millicharge DM models

Zuowei Liu, **Yu Zhang**, 1808.00983, PRD Zuowei Liu, Yong-Heng Xu, **Yu Zhang**, 1903.12114, JHEP Jinhan Liang, Zuowei Liu, Yue Ma,**Yu Zhang**, 1909.06847

Charge quantization

 $Q_e = -1$ $Q_u = 2/3$ $Q_d = -1/3$ $Q_W = \pm 1$

Millicharge

- In general, electric charge can be of any value
- $\mathscr{L}_{int} = \varepsilon e A_{\mu} \bar{\chi} \gamma^{\mu} \chi$
- $\varepsilon \ll 1$, χ is millicharged
- Stringent constraints on millicharge of SM particles

$$Q_p - Q_e < (0.8 \pm 0.8) \times 10^{-21} e \qquad \mathbf{M}$$
$$Q_n < (-0.1 \pm 1.1) \times 10^{-21} e \qquad \mathbf{B}$$
$$Q_n < (-0.4 \pm 1.1) \times 10^{-21} e \qquad \mathbf{B}$$
$$Q_\nu < 10^{-17} e \qquad \mathbf{B}$$

Marinelli et al. 1984 Bressi et al. 2011 Baumann et al. 1988 Barbiellini et al. 1987

Constraints on millicharge

Jaeckel, Ringwald, 1002.0329

Constraints on millicharge

Jaeckel, Ringwald, 1002.0329

Millicharge & 21 cm anomaly

Bowman et al., Nature25792 (2018); Barkana, Nature25791 (2018); Munoz, Loeb, Nature 557 (2018) no.7707, 684; + others

 $e^+e^- \rightarrow \chi \bar{\chi} \gamma$

 $\mathscr{L}_{int} = \varepsilon e A_{\mu} \bar{\chi} \gamma^{\mu} \chi$

Basic detector cuts

BESIII & STCF: BESIII, 1707.05178

- EMC桶部(barrel):
 - $E_{\gamma} > 25 \,\mathrm{MeV} \,\& |\cos \theta_{\gamma}| < 0.8$
- EMC端盖(end-caps):
 - $E_{\gamma} > 50 \,\mathrm{MeV} \,\&\, 0.86 < |\cos \theta_{\gamma}| < 0.92$

CEPC: CEPC, 1811.10545

• $E_{\gamma} > 0.1 \, \text{GeV} \, \& |\cos \theta_{\gamma}| < 0.99$

Distributions at CEPC

Distributions at CEPC

After Basic Cuts

Distributions at CEPC

After Basic Cuts

Reducible backgrounds

1.共振态衰变(比如 J/Ψ → ¥ X)

① J/ ψ → $\psi v v$ 可忽略的不可约背景,

 $Br=0.7 \times 10^{-10}$ Gao 1408.4552

②J/ ψ → χ X 末态X探测不到

2.过程e⁺ e⁻ → e⁺ e⁻ γ 末态电子探测不到

3.过程e⁺ e⁻ → f f **γ** 未态ff探测不到

4. 过程e⁺ e⁻ → 𝘵𝘵 末态只能探测到一个光子

AcMs, Mastrolia, Ossla, 0909.1750

AcMs, Mastrolia, Ossla, 0909.1750

$$\overline{|\mathcal{M}|^2} \propto \frac{1}{t_{13}t_{24}} \sim \frac{1}{\theta_{13}^2 t_{24}} \text{ for } \theta_{13} \ll 1 \& m_e \to 0$$

标准模型中单光子产生截面

Advanced cuts

$$\chi_i^2(\varepsilon) \equiv \frac{S_i^2}{S_i + B_i}$$
$$\chi_{\text{tot}}^2(\varepsilon) = \sum_i \chi_i^2(\varepsilon)$$
$$\chi_{\text{tot}}^2(\varepsilon_{95}) = \chi^2(0) + 2.71$$

Cuts at Belle II

Sensitivity at Belle II

Optimized cut

 $e^+e^- \to \Upsilon(3S) \to \gamma A^0$ BaBar, 0808.0017

High-E (28/fb): 3.2 GeV < E_{cm}^{γ} < 5.5 GeV, $-0.31 < \cos(\theta_{cm}^{\gamma}) < 0.6$ Low-E (19/fb): 2.2 GeV < E_{cm}^{γ} < 3.7 GeV, $-0.46 < \cos(\theta_{cm}^{\gamma}) < 0.46$

Z' DM models

Zuowei Liu, Yong-Heng Xu, Yu Zhang, 1903.12114, JHEP

$$\mathcal{L} = Z'_{\mu}\bar{\chi}\gamma^{\mu}(g_V^{\chi} - g_A^{\chi}\gamma_5)\chi + Z'_{\mu}\bar{f}\gamma^{\mu}(g_V^f - g_A^f\gamma_5)f_{\mu}$$

$$\frac{d\sigma}{dE_{\gamma}dz_{\gamma}} = \frac{\alpha \Big[(g_V^f)^2 + (g_A^f)^2 \Big] \Big[(g_V^{\chi})^2 (1+2y) + (g_A^{\chi})^2 (1-4y) \Big] s_{\gamma}^2 \beta_{\chi}}{6\pi^2 s E_{\gamma} \left[(s_{\gamma} - M_{Z'}^2)^2 + M_{Z'}^2 \Gamma_{Z'}^2 \right]} \left[\frac{1+x(1+z_{\gamma}^2)}{1-z_{\gamma}^2} \right]$$

$$\Gamma_{Z'} = \Gamma(Z' \to \chi\bar{\chi}) + \sum_{f} \Gamma(Z' \to f\bar{f})$$

$$\Gamma(Z' \to \chi \bar{\chi}) = \frac{M_{Z'}}{12\pi} \sqrt{1 - 4\frac{m_{\chi}^2}{M_{Z'}^2}} \left[(g_V^{\chi})^2 \left(1 + 2\frac{m_{\chi}^2}{M_{Z'}^2}\right) + (g_A^{\chi})^2 \left(1 - 4\frac{m_{\chi}^2}{M_{Z'}^2}\right) \right]$$

Xsec versus mass

 $M'_Z = 150 \text{ GeV}$

Distributions and cuts

(1) $E_{\gamma} > 0.1 \,\text{GeV},$

张宇

- (2) $|\cos\theta_{\gamma}| < |\cos\theta_b| = 0.99,$
- (3) $E_{\gamma} < E_{\chi}^m = (s 4m_{\chi}^2)/(2\sqrt{s}),$
- (4) veto $E_{\gamma} \in (E_{\gamma}^Z \pm 5\Gamma_{\gamma}^Z),$

(5) $E_{\gamma}(\theta_{\gamma}) > E_B^m(\theta_{\gamma}) = \sqrt{s}(1 + \sin\theta_{\gamma} / \sin\theta_b)^{-1}$

In the H mode: (for m < 75 GeV) 147 GeV < M_{γ} < 153 GeV

$$M_{\gamma} = \sqrt{s - 2\sqrt{s}E_{\gamma}}$$

Sensitivity at CEPC

DM effective operators

Zuowei Liu, Yong-Heng Xu, Yu Zhang, 1903.12114, JHEP

$$\begin{array}{ll} \text{Vector:} \quad \mathcal{L} = \frac{1}{\Lambda_V^2} \bar{\chi} \gamma_\mu \chi \bar{\ell} \gamma^\mu \ell, \\ \text{Scalar(s):} \quad \mathcal{L} = \frac{1}{\Lambda_s^2} \bar{\chi} \chi \bar{\ell} \ell, \\ \text{Axial vector:} \quad \mathcal{L} = \frac{1}{\Lambda_A^2} \bar{\chi} \gamma_\mu \gamma_5 \chi \bar{\ell} \gamma^\mu \gamma_5 \ell, \\ \text{Scalar(t):} \quad \mathcal{L} = \frac{1}{\Lambda_t^2} \bar{\chi} \ell \bar{\ell} \chi \end{array}$$

Distributions

Sensitivity at CEPC

Dark photon invisible decay at BESIII/STCF

Yu Zhang, et. al., 1907.07046, PRD

Dark photon

Dark photon production at e^+e^- colliders

Limits

 $y = \varepsilon^2 \alpha_D (m_{\chi}/m_{A'})^2$

$$m_{A'} = 3m_{\chi}, \ \alpha_D = 0.5$$

 $m_{A'} = 3m_{\chi}, \ \alpha_D = 0.005$

安徽大学(Anhui University)是国家"双一流"建设高校,安徽省人民政府与教育部共建高校,安徽省属重点综合性大学。

