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Four fundamental forces of Nature
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Asymptotic freedom: g decreases with the energy scale increases

g=0is a UV fixed point. For example: QCD
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In QCD and the Standard Model
the beta function is indeed
negativel




The Nobel Prize in Physics 2004

‘David J. Gross H Dévid Politzer Frank Wilczek

Prize share: 1/3 Prize share: 1/3 Prize share: 1/3

The prize was awarded to Gross, Politzer and Wilczek for
the discovery of asymptotic freedom in the theory of the
strong interaction.



Asymptotic safety is an another concept in quantum field theory,
which means that there is a nontrivial UV fixed point of the
renormalization group flow of the coupling constants in the theory
space, and thus physical quantities are safe from divergences.

Although originally proposed by Steven Weinberg in 1976 to find a
theory of quantum gravity, the idea of a nontrivial fixed point

providing a possible UV completion can be applied also to other field
theories.

CRITICAL PHENOMENA FOR FIELD THEORISTS

"Maybe nature is
fundamentally ugly,
chaotic and
complicated. But if it's
like that, then I want
out.”

. Steven Weinberg

Weinberg 1976



Theory space

UV critical
surface

Fig: Trajectories of the renormalization group flow in theory space
with arrows pointing from UV to IR scales

The green trajectory does not belong to the theory space of
asymptotic safety.




Examples of asymptotic safety

Consider a dimensionless coupling o = gu®, where the mass dimension
of g is —A. The 3 function of « is given by

B(a) = 0y = Aa — Ba®

where ¢ = In(u/A) denotes the logarithmic RG 'time’, p the RG energy scale,
and A a characteristic reference scale of the theory.

The linear term in the 8 function, Ac«, is the tree-level contribution. The
quadratic term —Ba?, stands for the one-loop contribution.
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The RG flow displays two types of fixed points, a trivial one at a, = 0,
and a non-trivial one at

a, =A/B

In the spirit of perturbation theory, the non-trivial fixed point a, = A/B
is accessible in the domain of validity of the RG flow as long as a, < 1.
This can be achieved in two manners,

e cither by having A <« 1 for fixed B,

e or by making 1/B < 1 at fixed A.

B(a) = Ao — Ba® = fB'(a)=A—- 2B«
S F0)=A F(A/B)= A

[t implies that a, = A/ B is an UV fixed point provided A > 0.

The existence of an interesting UV fixed point is the bare bone of
asymptotic safety.



Gravity in 2+€ dimensions

Consider Einstein gravity with action
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in d dimensions.
[S] =0, [R] = 2,
=

Define the dimensionless gravitational coupling of the model as

a=Gy(p)p'

In d = 2 + ¢ dimensions,
[GN]:—E = A=ex1

One-loop calculation gives B = 50/3. There exists an UV fixed point in the
perturbative regime.




Gross-Neveu model in 2+ dimensions and in 3 dimensions

Consider a purely fermionic theory of Np self-coupled massless Dirac
fermions with Gross-Neveu interaction (1/2)gan(11)? in d dimensions.

LOYidy =
1 d—1

£3§9GN(ZE¢)2 = d:[gGN]+T'4 = |gen]=2—-4d

Define the dimensionless coupling as

o = QGN(ﬂ)ud2
27TNF

We can compute the 8(«a) = Aa — Ba? in d = 2 + € dimensions. The
coefficient A, given by minus the canonical mass dimension, becomes A =
€ < 1. The coefficient B, to leading order in ¢, is of order one and given by
the 1-loop calculation in the two-dimensional theory. Hence, the model has
a reliable UV fixed point in the perturbative regime.

In the large Np limit and at fixed dimension d = 3, one finds that A
1/Np < 1 while the coefficient B > 0 remains of order unity, leading to the
same conclusion.




Asymptotically safe bahavior of the SM by neglecting b
and T contributions to the 3-loop terms and Yukawa
couplings of the 1st, 2nd generations

SM RGE at 3 loops in g153, Vs, A and at 2 loops 1n yj, ;
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Pelaggi, Sannino, Strumia, Vigiani, 1701.01453



By neglecting top Yukawa coupling, the SM is asymptotically safe:

Mann, Meffe, Sannino, et al. 2017




Evidence of dark matter

NGC 6503

~—____ Luminous

e e e s eean,

Gas

10 20 30
Radius (kpc)

K.G. Begeman, A.H. Broels, R.H. Sanders. 1991. Mon.Not.RAS 249, 523.

Matter domination A domination
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Schematic plot of the evolution of density pertirbations in different components. Here,
and @ is the gravitational potential. The left dashed vertical line is the time of horizon
of a mode considered
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WIMP miracle

If dark matter is made of weakly interacting massive particles
(WIMPs), what we observe is the relic density of these particles

after the cooling of the universe.

Boltzmann equation in the thermal freeze-out mechanism:

n+3Hn =—(ov)| n? —(n*)? |

X
) Op . 2 /45 ¢ 1
p. 1 h*\zg, M (ov)

2
- 0.1 pb ~ 0.1( Myimp j
<GV> 100 GeV

Thermal relic ‘ dark matter at weak scale!




A typical WIMP -- minimal dark matter

Introduce an extra electroweak multipliet x to the SM:

L1 70D —M)y (fermionic multiplet)
(D)D) -M2 Ty (scalar multiplet)

* Cosmologically stable due to accidental symmetry
* Only one parameter: M, which is fixed by relic density
* Lightest component is neutral

* Allowed by WIMP DM searches

Cirelli, Fornengo, Strumia, 2005



Mass splitting




DM annihilation: perturbative calculation

g5 (3 —4n? 4+ n*) 4+ 0(g39%, g5)
647 M2 dof y

g3 (n* 4+ 9n? — 10) + O(959% . 95)
647 M2 dof y

I A i scalar

iIf X is a fermion




Non-perturbative Sommerfeld corrections

DM mass in TeV DM mass in TeV

1702.01141




Sommerfeld enhancement (SE) effect[JCAP 05 (2017) 006]:

2
v—0 270" QoM X

ov—S-ov, S >~ —— | 1—cos27
K M,

AeeM, /KMy — 1,2,3..., S becomes very large.



Direct detection

Figure 1: One loop DM /quark scattering for fermionic MDM with Y = 0. Two extra graphs
involving the four particle vertex exist in the case of scalar MDM.

Iﬂl{.l-}-‘.'[ }( J' 1
os(DMA — DMN) = (n® — 1)*—2—5— (=5 + —3)’
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Detection of WIMP dark matter

Indirect detection
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China JinPing Underground Laboratory (CJPL)

Yalongjiang
River

CIpLA TEREBIIES

Phase |
6 m(H) X6 m(W) X 40 m(L)

Screening Facilties

Experiments: CDEX, PandaX



Exclusion Limits for Spin-independent (SI) Scattering
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Exclusion Limits for Spin-dependent (SD) Scattering
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CDEX-10 experiment: 102.8 kg-day data

Leading limits for 4-5 GeV WIMP direct detection

SI SD
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CDEX Collaboration, PRL 120, 241301 (2018)




Minimal asymptotically safe dark matter

Introducing N Weyl spinors of SU(2); n-plets, with n=2k+1, k=1,2,3...
and Y =0.
Lagrangian:

o 1
Lo =@Nc"D, V! — EMDM[@;“I’S +h.c.],

wherei=1,2,...,n; I =1,2,...,Ng.
Benefits of Ny:
@ Large Ny cases have asymptotic safety.
@ Global O(Ng) symmetry prevents DM from decay.

@ Comparing to MDM, DM candidate has a smaller mass. Signals in collider
are amplified by an Ny factor. Therefore it is easier to be detected by

colliders.

@ Annihilation rates in galaxies and dwarf galaxies are suppressed by 1/N;.
Less tension with current observation bounds.

C.Cai, H.H.Zhang, 1905.04227




For fixed o_2 * N_F, one can sum up the leading 1/N_F order self-

energy contributions:




Beta function in the large N_F limit
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Running of the gauge coupling alpha_2

Triplet (n=3) Quintuplet (n=5)
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Direct detection constraints

the same as MDM

Electroweak
contributions

Including QCD effects, the upper

bounds are [Hisano, Ishiwata, Nagata,

1504.00915]:
e 107(-47) cm”2 for 3plet
 107(-46) cm”2 for 5plet

n-plets (n>5) are excluded




Dark matter relic density

The total relic abundance is Np times of MDM.
1.07 x 10°GeV~!

VEMy [ L
When Qp,,h? is fixed by data, My, is suppressed by 1/+/N5.
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Collider searches for disappearing track of charged particles

Nearly degenerate multiplet with mass splitting

Amg = Mg, — M, =Q*6m, Sm ~ 164 MeV

T~ 0.2 ns, CT A bcm

Charged state is EW produced. Traveling a distinguishable distance in the
detector before it decays through y* — y° + =,

ATLAS Simulation
+
!




Constraints from disappearing track of charged particles

For Ny triplet, life time T &~ 0.2 ns and the traveling distance of charged state is
the same as wino. However, the production rate is amplified as 0 — N 0.

Triplet (n=3)

Ne flavors
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How to estimate the t=0.2 ns data from CMS

CMS bounds [JHEP 08 (2018) 016]

38.4 b’ (13 TeV)
3 TeV) — T3
] 7 |
CMS 95% CL upper limits
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= NLO+NLL prediction—|
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Continuous spectrum of y-ray comes from DM pair annihilation to WW,Z Z.




Continuous spectrum of gamma-ray
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@ For triplet, models with Nz > 2 survive.

@ For quintuplet, all cases (N = 16) are still disfavored.




Summary

Extending SM with N fermionic n-plets is reasonable and motivative.
SU(2); gauge coupling is asymptotically safe.

n=3 and b is favored by direct detection.
Large N implies smaller DM mass and higher production rate in collider.

Disappearing track searches set a bound that Ny < 20 for the triplet models.
In the future HL-LHC experiment, this model can be further tested.

Although triplet MDM model has been excluded by the observation of y-ray
continuous spectrum, Ny = 3 survive due to a 1/Ny suppression.

Quintuplet models are still disfavored even it has 1/N; suppression.

Triplet models with 3 <= N_F < 20 flavors are consistent with all
current experiments



