WIMP sensitivity from CMB measurements

高宇 Yu Gao

IHEP, CAS

BNU-Zhuhai 2019/12/06

Outline

- WIMP induced energy injection after Recombination
- Impacts on ionization & temperature
- Ionization: CMB temp. & pol. maps
- Temperature (& ion.): 21cm

Dark matter mass range

WIMP `means' energy injection

- Annihilation (required) Decay (optional) for thermal WIMP
- Energy release during dark ages

Annihilation: fast during high z, (plus late-time boost)

$$\frac{dE}{dV\,dt} = \rho_c^2 c^2 \Omega_{\rm DM}^2 (1+z)^6 p_{\rm ann}(z) \qquad \sim (z+1)^6$$

Decay: a steady rate, unaffected by structure formation

$$\frac{\mathrm{d}E}{\mathrm{d}V\mathrm{d}t} = \Gamma_{\mathrm{DM}} \cdot \rho_{\mathrm{c},0} \Omega_{\mathrm{DM}} (1+z)^3 \qquad \sim (z+1)^3$$

Primordial Black holes: Hawking evaporation at mostly constant rate similar to DM decay, soft in radiation energy

$$\frac{dE}{dVdt}\Big|_{\rm BH} = \frac{\dot{M}_{10}}{M_{10}}\rho_{cr}(z)\Omega_{PBH}(z)\eta(E_{PBH},z) \sim (z+1)^3$$

Injection & absorption

• Injected high-energy particles lose energy by scattering, ionization, excitations, etc...

Not all energy is immediately deposited into the environment (gas, CMB, etc) if particles are too energetic: * accumulative over earlier injection

* efficiency reduces at later time

Numerical calculation

Implemented into **HyRec** codes:

new physics induced excitation, scattering terms, Lyman- α photons, etc.

Also see: Belotsky, Kirillov 2015

5

Energy "fraction" into ionization (of H)

• The `effective' deposit fraction *f*(E,z)

Absorption/injection ratio is cumulative of historic injection:

Higher at late time (low z) & low E Instant absorption at very low E

• Averaged over injection spectra and species *s*

$$f_c(m_{\rm DM}, z) = \frac{\sum_s \int f_c(E, z, s) E(\mathrm{d}N/\mathrm{d}E)_s \mathrm{d}E}{\sum_s \int E(\mathrm{d}N/\mathrm{d}E)_s \mathrm{d}E},$$

- Electrons are more effective than gamma rays at large energy
- Photons emissions extends to (much) lower DM mass range
- Protons from cascades are negligible

Energy deposit: ionization & heating

• Raises ionization fraction

$$\frac{dx_e}{dz} = \left(\frac{dx_e}{dz}\right)_{\text{orig}} - \frac{1}{(1+z)H(z)} (I_{Xi}(z) + I_{X\alpha}(z)) \text{ ionization}$$
$$I_{Xi}(z) = f_i(E, z) \frac{dE/dVdt}{n_H(z)E_i}$$
$$I_{X\alpha}(z) = f_\alpha(E, z)(1-C) \frac{dE/dVdt}{n_H(z)E_\alpha}$$

Fxtra

• Raises IGM temperature

$$\frac{dT_{\rm IGM}}{dz} = \left(\frac{dT_{\rm IGM}}{dz}\right)_{\rm orig} - \frac{2}{3k_B(1+z)H(z)}\frac{K_h}{1+f_{\rm He}+x_e} \quad \& \text{ gas heating}$$
$$K_h(z) = f_h(E,z)\frac{dE/dVdt}{n_H(z)}$$

The cosmic ionization history

Standard ionization evolution is obtained by solving the Boltzmann equation for electrons:

$$\frac{dX_e}{dt} = \left\{ (1 - X_e)\beta - X_e^2 n_b \alpha^{(2)} \right\}$$

Ionization rate:

$$\beta \equiv \langle \sigma v \rangle \left(\frac{m_e T}{2\pi}\right)^{3/2} e^{-\epsilon_0/T}$$

Recombination:

Approx. capture rate to a non-ground state

$$\alpha^{(2)} \equiv \langle \sigma v$$

$$\alpha^{(2)} = 9.78 \frac{\alpha^2}{m_e^2} \left(\frac{\epsilon_0}{T}\right)^{1/2} \ln\left(\frac{\epsilon_0}{T}\right)$$

 $x_{e}^{}$ reduces to a 10 $^{\rm 4}$ floor during the cosmic dark age and returns to unity @EoR

Ionization fraction: xe

Annihilation: raises the x_{ρ} floor,

Decay: steady rise in x_e

Free electrons: the CMB Cls

Impact on the CMB Cls

Degeneracy with Cosmological Parameters

Polarization helps breaking degeneracy

Data: PLANCK18 (DM decay scenario) Fit by CosmoMC

TABLE I. Correlation coefficients between Γ_{DM} and base Λ CDM parameters.

Polarization ani. C_l TE, EE peak location shift sensitive to higher z (~recombination) effects

Major degeneracy: EoR history

FIG. 4: The state-of-the-art measurement on $x_{\text{HI}}(z)$, taken from Table I. The black and red dashed lines are two examples of the "tanh" model which cannot fit the data very well.

Wei-Ming Dai, Yin-Zhe Ma, Zong-Kuan Guo, Rong-Gen Cai PRD 99, (2019) 04352 Astrophysical energy injection has similar effects as that from DM.

Current limits: WIMP annihilation

Planck Collaboration: Cosmological parameters

Fig. 46. *Planck* 2018 constraints on DM mass and annihilation cross-section. Solid straight lines show joint CMB constraints on several annihilation channels (plotted using different colours), based on $p_{ann} < 3.2 \times 10^{-28} \text{ cm}^3 \text{ s}^{-1} \text{ GeV}^{-1}$. We also show the 2σ preferred region suggested by the AMS proton excess (dashed ellipse) and the *Fermi* Galactic centre excess according to four possible models with references given in the text (solid ellipses), all of them computed under the assumption of annihilation into $b\bar{b}$ (for other channels the ellipses would move almost tangentially to the CMB bounds). We additionally show the 2σ preferred region suggested by the AMS/PAMELA positron fraction and *Fermi*/H.E.S.S. electron and positron fluxes for the leptophilic $\mu^+\mu^-$ channel (dotted contours). Assuming a standard WIMP-decoupling scenario, the correct value of the relic DM abundance is obtained for a "thermal cross-section" given as a function of the mass by the black dashed line.

DM interpretations, also see H.Liu, T. R. Slatyer, J. Zaval, 16' PLANCK 18: `Cosmological parameters'

Upcoming CMB pol. experiments

AC	Т, С	hile	
			A COLORED
	ACT		「「「「「「「「」」」」

实验	$\sigma_{P\!\!,v}~(\mu k')$	θ _{FWHM,v} (')	观测频率 (CHz)	参考文献	实验状态
AliCPT	2.06	15.37	95	1710. 03047	在建
	2.06	9.73	150		
AdvACTPo1	7.8	2.2	90	1406. 4794v2	运行中
	6.9	1.3	150		P
	25	0.9	230		1 · · ·
CLASS	39	90	38	1408.4788	运行中
	10	40	93		
	15	24	148		
	43	18	217		
Simons Array	13.9	5.2	95	1502.01983	运行中
	11.4	3.5	150		H
	30.1	2.7	220		
SPT-3G	6	1	95	1407.2973	运行中
	3.5	1	150		J
	6	1	220		
Simons	13.35	91	27	1808.07445	在建,预计
Observatory	24	63	39		2020 年建
-	2.69	30	93		成
Small	2.97	17	145		
Aperture	5.594	11	225		
Telescope	14.14	9	280		
Simons	73.5	91	27	1808.07445	在建,预计
Observatory	38.18	63	39		2020 年建
-	8.2	30	93		成
Large	8.91	17	145		
Aperture	21.21	11	225		
Telescope	52.32	9	280		

+ BICEP3 data available

IHEP's contribution

WIMP prospects: annihilation

WIMP prospects: decay (to e+e-)

← Keck/BICEP3

Shape traces deposit efficiency

WIMP prospects: decay (to $\gamma\gamma$)

About (E-mode) Pol. Sensitivity...

- Mostly via extra ionization.
- Breaks degeneracy in τ looks good! \bigcirc
- (Annihilation) Not all that sensitive to clustering boost 🙂
- Due to saturation by EoR, may not fully reveal late-time rise in x_e and IGM temperature

Early EOR observation will be helpful:

We may hear a lot from 21cm ...

- Precision reionization history: Ionization fraction x_e, mean temperature T_G
- **Distribution of neutral Hydrogen gas** temperature map & power spectrum P(k)

Simulated T₂₁ map w DM, Rennan Barkana, nature25791

 $k = 0.08 \, \text{Mpc}$ $k = 0.18 \, {\rm Mpc}^{-1}$ 10^{3} $(\delta \bar{T}_b)^2 \Delta^2_{21} \, (mK^2)$ 10 10 $WDM - CDM (mK^2)$ 10 10 10 10 10 12 16 18 20 8 14 16 18 20 8 10 12 14

Projected power spectrum sensitivities (from SKA white paper)

CMB's 21cm absorption needs:

(1) neutral Hydrogen presence (2) T_s cooler than CMB

Dark age window

Bowman, et.al. Nature 555, 67 (2018).

$T_{_{21}}$ dependencies...

- 21cm brightness relies on IGM temperature evolution
- Direct x_e, T measurements.

$$T_{21} = 26.8 x_{\rm HI} \frac{\rho_{\rm g}}{\overline{\rho}_{\rm g}} \left(\frac{\Omega_{\rm b} h}{0.0327} \right) \left(\frac{\Omega_{\rm m}}{0.307} \right)^{-1/2} \left(\frac{1+z}{10} \right)^{1/2} \left(\frac{T_{\rm S} - T_{\rm CMB}}{T_{\rm S}} \right)$$

ionization
Gas density
distribution
$$Gas \ densityT_{21} \propto \frac{1}{H(z)} \left(1 - \frac{T_{\gamma}(z)}{T_{\rm s}(z)} \right)$$

Gas spin
temperature
against bkg
(CMB)

T_s~T_{IGM} at cosmic dawn ₂₆

Temperature evolution

Ζ

21cm absorption lines whenever T_s is lower than T_{CMB} . Temperature sim. with HyRec

Z The average `brightness temperature', (ignoring over-density and comoving velocity gradients)

$$T_{21} \approx 0.023 \text{K} \cdot x_{\text{H}_{\text{I}}}(z) \left(\frac{0.15}{\Omega_{\text{m}}} \cdot \frac{1+z}{10}\right)^{\frac{1}{2}} \frac{\Omega_{\text{b}}h}{0.02} \left(1 - \frac{T_{\text{CMB}}}{T_{\text{S}}}\right)$$

EDGES: First claim of 21cm

J. D. Bowman, A. E. E. Rogers, R. A. Monsalve, T. J. Mozdzen, and N. Mahesh, Nature 555, 67 (2018).

(b)

EDGES: A Discovery near 78 MHz?

Freq.= 1420 MHz / (1+z)

> ~Twice the predicted signal !

Figure 2 | Best-fitting 21-cm absorption profiles for each hardware case.

WIMP involvement?

DM cooling (DM is cooler)

Lower gas temperature via collisions: more 21cm signal

Explains the EDGES data *needs large scattering xsec

DM heating (DM injects energy)

Raises gas temperature by energy injection: reduces 21cm signal

Most stringent bounds on DM annihilation, decays & other energy injections

CMB uncertainties

Large uncertainty at low frequency; radio-frequency *new physics*, like ALP Non-standard cosmology

Modified Friedmann Eq.

Yeah

Nay

WIMP cooling as an explanation to the EDGES data

Milli-charged DM constrained to MeV range and tiny (<1%) fractions of relic density E.D.Kovertz, et.al. 18'

* subleading abundance is OK if millicharged DM also has long-range force with the rest of DM (H.Liu, Outmezguine, Redigolo, Volansky 1908.06986)

Discovering 21cm means a WIMP constraint

On DM annihilation rates: by requiring injection induced $\Delta T_{21} < +100 \text{ or } +150 \text{ mK}$

G. D'Amico, P. Panci, A. Strumia 18'

Excluding vanilla thermal wimp below 10^2 GeV?

Unlike CMB pol., 21cm is **VERY sensitive** to DM clustering boost

WIMP lifetime bound @ 21cm discovery

Summary

CMB Pol. anisotropy

- * sensitive to ionization
- * degenerate to EoR
- * Cl sensitive to higher-z effects
- * Great improvement from TT-alone
- * Not very sensitive to clustering
- * Discovered precision obs.
- * Derived effects from xe, T

Global 21cm signal (Dawn)

* sensitive to IGM temperature
* breaks EoR degeneracy
* sensitive to clustering
* HUGE foreground (> 10⁵)

– signal not confirmed yet

* Direct xe, T measurement

Common features:

- * Based on energy deposits
- * Wide WIMP mass range coverage (esp. btw X-ray and γ -ray)
- * Future sensitivity to weak scale WIMP annihilation
- * VERY tight limits on **long-lifetime** visible WIMP decays
- * **Rosy prospects** from future radio-astro experiments.