Light Dark Matter (0.1GeV-10GeV) and Ultralight bosonic Dark Matter

Jia Liu The Enrico Fermi Institute, University of Chicago

with Vedran Brdar, Joachim Kopp, Tracy Slatyer, Xiaoping Wang and Wei Xue. 1609.02147, 1705.09455 and 1902.02348

Dark Matter (WIMPs) direct detection @PKU 2019-10-14

 σ_{int} (pb)

Axion-like particle, dark photons, dark scalar, sterile neutrino, etc

 σ_{int} (pb)

Axion-like particle, dark photons, dark scalar, sterile neutrino, etc

Outlines

- A model building issue regarding light DM (0.1-10) GeV
- The small scale problems for ultralight bosonic DM

WIMP: Standard Freeze-out

- Thermal cross-section $\langle \sigma v \rangle \sim \frac{\alpha^2}{m_W^2} \sim 3 \times 10^{-26} \text{cm}^3 \text{s}^{-1}$
- DM Annihilation cross-section

$$\langle \sigma v \rangle \sim \frac{g^4}{m_{\rm DM}^2} \Rightarrow g^2 \sim \frac{m_{\rm DM}}{10 {\rm TeV}}$$

• Light DM (0.1GeV - 10 GeV)

$g \in [0.003, \, 0.03]$

Jungman et al hep-ph/9506380

- If no prejudice about g << 1.
- Other heavy particles in the diagram, W/Z/h

Standard Freeze-out

- Light DM (0.1GeV 10 GeV) looks very normal!
- There are extra motivations for this mass range
 - Asymmetric DM: n_{DM} ~ n_B
 - Strongly-Interacting Dark Matter: 3 DM -> 2 DM
- We stay with the simple freeze-out.

Motivation from a special case: Detectable Light Dark Matter (0.1-10) GeV

- Detectable: can have signal in both direct and indirect searches
 - 1. Has sizable coupling to SM fermions
 - 2. Thermal freeze-out
 - DM Annihilation to SM fermions
 - Pressure from CMB constraints for this mass range

 DM annihilation injects extra energy into the primordial plasma, which would delay recombination and thus leave observable imprints in the CMB.

 $DM + DM \rightarrow SM + SM$

• The rate DM energy density converted into EM energy

$$\frac{d\rho_{DM}}{dt} = m_{DM} n_{DM} n_{DM} \langle \sigma v \rangle \times f_{eff}$$

 f_{eff}: the efficiency with which the energy released in DM annihilation is absorbed by the primordial plasma

- DM DM > SM SM
- The rate DM energy density converted into EM energy

$$\frac{d\rho_{DM}}{dt} = m_{DM} n_{DM} n_{DM} \langle \sigma v \rangle \times f_{eff}$$

 f_{eff}: the efficiency with which the energy released in DM annihilation is absorbed by the primordial plasma

Channel	DM Mass (GeV)	$f_{ m eff}$	$f_{ m eff,new}$	W bosons	200	0.26	0.19
Electrons	1	0.85	0.45	$\chi\chi ightarrow W^+W^-$	300	0.25	0.19
$\chi\chi ightarrow e^+e^-$	10	0.77	0.67		1000	0.24	0.19
	100	0.60	0.46	Z bosons	200	0.24	0.18
	700	0.58	0.45	$\chi\chi ightarrow ZZ$	1000	0.23	0.18
	1000	0.58	0.45	Higgs bosons	200	0.30	0.22
Muons	1	0.30	0.21		1000	0.00	0.22
$\chi\chi ightarrow \mu^+\mu^-$	10	0.29	0.23	$\chi \chi \rightarrow nn$	1000	0.20	0.22
	100	0.23	0.18	b quarks	200	0.31	0.23
	250	0.21	0.16	$\chi \chi o b \overline{b}$	1000	0.28	0.22
	1000	0.20	0.16	Light quarks	200	0.29	0.22
	1500	0.20	0.16	$\chi\chi ightarrow uar{u}, dar{d}~(50\%~{ m each})$	1000	0.28	0.21
Taus	200	0.19	0.15				
$\chi\chi ightarrow au^+ au^-$	1000	0.19	0.15	10 1310.3815, Tra	cy Slatyei	r et al.	

 f_{eff}: the efficiency with which the energy released in DM annihilation is absorbed by the primordial plasma

Channel	DM Mass (GeV)	$f_{ m eff}$	$f_{ m eff,new}$	XDM electrons	1	0.85	0.52
Electrons	1	0.85	0.45	$\chi\chi ightarrow \phi\phi$	10	0.81	0.67
$\chi\chi ightarrow e^+e^-$	10	0.77	0.67	followed by	100	0.64	0.49
	100	0.60	0.46	$\phi ightarrow e^+e^-$	150	0.61	0.47
	700	0.58	0.45		1000	0.58	0.45
	1000	0.58	0.45	XDM muons	10	0.30	0.21
Muons	1	0.30	0.21	$\chi\chi ightarrow \phi\phi$	100	0.24	0.19
$\chi\chi o \mu^+\mu^-$	10	0.29	0.23	followed by	400	0.21	0.17
	100	0.23	0.18	$\phi ightarrow \mu^+ \mu^-$	1000	0.20	0.16
	250	0.21	0.16		2500	0.20	0.16
	1000	0.20	0.16	XDM taus	200	0.19	0.15
	1500	0.20	0.16	$\chi\chi o \phi\phi, \phi o au^+ au^-$	1000	0.18	0.14
Taus	200	0.19	0.15	XDM pions	100	0.20	0.16
$\chi \chi ightarrow au^+ au^-$	1000	0.19	0.15	$\chi \chi ightarrow \phi \phi$	200	0.18	0.14
				followed by	1000	0.16	0.13

Constrain annihilation to mediator as well

1310.3815, Tracy Slatyer et al.

1500

2500

0.16

0.16

0.13

0.13

 $\phi \rightarrow \pi^+ \pi^-$

11

• DM mass should be larger than ~ 10 GeV

How to escape CMB constraints?

- 1. Annihilate into neutrinos only!
 - (X) not detectable in direct detection
- 2. P-wave annihilation or no annihilation (asymmetric DM)
 - (X) not detectable in indirect detection

$$\langle \sigma v \rangle = \frac{1}{4m_{DM}^2} \int dP S_2 |\mathbf{M}|^2$$
$$|\mathbf{M}|^2 \approx a + bv^2 + \cdots$$

 $\langle \sigma v \rangle \propto v^2 \approx 10^{-6}$

Too small for indirect detection!

Escape CMB constraints while being detectable in indirect searches

- How about cross-section linear in v?
 - For CMB, single v is enough $v \approx \sqrt{T_{CMB}/m_{DM}} \approx 10^{-5}$

- For indirect detection
 - Cluster, v ~ 1000 km/s ~ 3 x 10⁻³
 - Galaxy, v ~ 220 km/s ~ 1 x 10⁻³
 - Dwarfs, v ~ 10 km/s ~ 3 x 10⁻⁵
- Detectable in Cluster and Galaxy, not in Dwarfs

Linear dependence in v

• Cross-section linear in v

$$\langle \sigma v \rangle = \frac{1}{4m_{DM}^2} \int dP S_2 |\mathbf{M}|^2$$

 $DM + DM \rightarrow X + X$

• If $m_{MD} = m_X$, then the two-body phase space

$$\int dPS_2 = \frac{1}{8\pi}v$$

• For s-wave annihilation, this gives

$$\langle \sigma v \rangle \approx \frac{1}{2} \sigma_0 v$$

Linear dependence in v

• In practice, not exact degenerate

- Model building for $\Delta \ll m_{DM}$
 - Symmetry reason
 - Custodial symmetry: dark SU(2) vector DM $\quad \Delta < 0$
 - Chiral symmetry: dark pion DM $\Delta > 0$
 - Supersymmetry: NMSSM setup 1901.02018

• $K_{1,2}$ are DM, K_3 is dark photon mediator

$$\mathcal{L}_{\mathrm{D}} = -\frac{1}{4} K^{a}_{\mu\nu} K^{a}_{\mu\nu} + (D_{\mu}\Phi)^{\dagger} (D_{\mu}\Phi) - \mu^{2} \Phi^{\dagger}\Phi + \frac{\lambda}{2} (\Phi^{\dagger}\Phi)^{2}$$
$$\mathcal{L}_{\mathrm{mix}} = \frac{1}{\Lambda^{2}} (\Phi^{\dagger}T^{a}\Phi) K^{a}_{\mu\nu} B_{\mu\nu}$$
$$\supset \frac{\varepsilon}{2} \left(1 + \frac{\phi}{v_{d}}\right)^{2} \left[\partial_{\mu}K^{3}_{\nu} - \partial_{\nu}K^{3}_{\mu} + g_{d}(K^{1}_{\mu}K^{2}_{\nu} - K^{2}_{\mu}K^{1}_{\nu})\right] \frac{1}{\cos\theta_{w}} B_{\mu\nu}$$

$$arepsilon \equiv -v_d^2 \cos heta_w / (2\Lambda^2)$$
 $m_k = rac{g_d v_d}{2}$

$$\Delta \equiv m_k - m_{K_3} \simeq -\frac{m_k}{2} \frac{\varepsilon^2}{\cos^2 \theta_w} \frac{(m_k^2 - \cos^2 \theta_w m_{Z,SM}^2)}{m_k^2 - m_{Z,SM}^2}$$
$$\mathcal{L} \supset K_3^{\mu} \left(\varepsilon e J_{em}^{\mu} - \varepsilon g \tan \theta_w \frac{m_k^2}{m_k^2 - m_Z^2} J_Z^{\mu}\right)$$

process	$v_{ m rel}$ - dependence	ε - dependence	freeze-out	CMB	Indirect Detection
$\begin{array}{c} K_{1} \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	$\sqrt{rac{v_{ m rel}^2}{4}+rac{2\Delta}{m_{ m DM}}}$	- 1	dominant	negligible	✓
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	ε^2	subdominant	dominant	\checkmark (γ line)
$\begin{array}{c} K_{1} & \phi \\ K_{3} & \phi \\ K_{1/2} \\ K_{2} \end{array} \xrightarrow{\phi} K_{1/2} \\ \gamma \\ K_{2/1} \\ \gamma \\ K_{2} \end{array} \xrightarrow{\phi} K_{1/2} \\ \gamma \\ \gamma \\ K_{2/1} \\ \gamma \\ \gamma \\ K_{2} \\ \gamma \\ $	1	ε^2	subdominant (requires $m_{\phi} < 2m_k$)	$\begin{array}{l} { m dominant} \ { m (requires} \ {m_{\phi}} < 2m_k) \end{array}$	$\checkmark (\gamma \text{ line if } m_{\phi} < 2m_k)$

• Viable model waiting for new direct detection exp

Dark pion model

	SU(N)	U(1)'	$\pi_d^{\pm} = DM$
u_d		2/3	
d_d		-1/3	$\pi^0_d \to A'A'$
ϕ	1	2	

• Chiral Lagrangian

$$\mathcal{L} = \frac{1}{4} f_{\pi}^{2} \operatorname{Tr} \left[\partial_{\mu} U^{\dagger} \partial^{\mu} U \right] + \mu \frac{f_{\pi}^{2}}{2} \operatorname{Tr} \left[U^{\dagger} M + M^{\dagger} U \right]$$
$$U = e^{i\sigma^{a}\pi_{d}^{a}} \qquad \pi_{d}^{a}\sigma^{a} = \begin{pmatrix} \pi_{d}^{0} & \sqrt{2}\pi_{d}^{+} \\ \sqrt{2}\pi_{d}^{-} & -\pi_{d}^{0} \end{pmatrix}$$

• Degenerate pion mass

$$m_{\pi}^2 = \mu(m_{u_d} + m_{d_d}) = 2\mu m_{q_d}$$

Dark pion model

• Mass splitting between DM and π^0 by U(1)'

$$\Delta \equiv m_{\pi_d^{\pm}} - m_{\pi_d^0} = g^{\prime 2} \frac{f_{\pi}^2}{2m_{\pi}} > 0$$

Interaction with SM through kinetic mixing

$$\mathcal{L} \supset rac{arepsilon}{2} F'_{\mu
u} F^{\mu
u}$$

Annihilation

$$\pi_d^+, \pi_d^0$$

$$\pi_d^-, \pi_d^0$$

$$\sigma v_{\rm rel} = \frac{9}{64\pi} \frac{m_{\pi}^2}{f_{\pi}^4} \sqrt{\frac{v_{\rm rel}^2}{4} + \frac{2\Delta}{m_{\pi}}}$$

Freeze-out

$$\approx 6 \times 10^{-26} \text{cm}^3 \text{s}^{-1} \times \left(\frac{m_{\pi}/f_{\pi}^2}{7 \times 10^{-4} \text{GeV}^{-1}}\right)^2, v_{\text{fo}} \sim 0.47$$

CMB
 $\approx 10^{-26} \text{cm}^3 \text{s}^{-1} \times \sqrt{\frac{2\Delta}{m_{\pi}}}, v_{\text{CMB}} \to 0$

Summary for detectable light DM

• We show two light DM models with direct detection signal, while can have sizable indirect detection

Model	$SU(2)_d$ dark	gauge boson	dark pion			
	$\Delta \simeq -rac{1}{2}arepsilon^2 m_{ m D}$	$_{\rm DM},$ eq. (10)	$\Delta \simeq g'^2 f_\pi^2/(2m_\pi), ~~{ m eq.}~(28)$			
mass splitting	$10^{-7}\lesssim arepsilon \lesssim 10^{-3}$	$arepsilon\gtrsim 10^{-3}$	$g'\gtrsim 0.05$			
	$\Delta < 0$ small	$\Delta < 0$ large	$\Delta > 0$			
freeze-out	$\sigma v_{ m rel} \propto v_{ m rel}$					
CMB	$\sigma v_{ m rel} \simeq 0$		$(72) \rightarrow \infty \sqrt{2\Delta}$			
Galaxies		$\sigma v_{ m rel} \simeq 0$	$V_{\rm rel} \propto \sqrt{m_{\rm DM}}$			
Clusters			$\sigma v_{ m rel} \propto {f BF} imes \sqrt{rac{2\Delta}{m_{ m DM}}}$			

 σ_{int} (pb)

Axion-like particle, dark photons, dark scalar, sterile neutrino, etc

The axion in the cosmology

- Global U(1)_{PQ} symmetry
 - Spontaneous broken leads to massless goldstone (Axion)
- At QCD scale~400MeV,
 - Potential from Chiral Lagrangian explicitly broke the symmetry leads to massive axion
 - Energy stored in coherent oscillation of axion field
 - When mass ~ Hubble, becoming cold dark matter

The misalignment production

 Ultralight dark matter candidates also include other bosonic particles: scalars, Axion-like particle (ALP), dark photon

25

. . . .

Neutrino oscillation in a dark matter medium

• The Mikheyev–Smirnov–Wolfenstein effect

(similar as light travel in the water)

• Vector dark matter model, U(1)_{mu-tau} dark photon

$$\mathcal{L}_{vector} = \bar{\nu}_L^{\alpha} i \gamma^{\mu} \partial_{\mu} \nu_L^{\alpha} - \frac{1}{2} m_{\nu}^{\alpha\beta} \overline{(\nu_L^c)^{\alpha}} \nu_L^{\beta} + g Q^{\alpha\beta} \phi^{\mu} \bar{\nu}_L^{\alpha} \gamma_{\mu} \nu_L^{\beta}$$

Similar MSW effect for neutrinos from dark matter medium

- The small-scale problems for CDM
 - Core-cusp
 - Missing satellite
 - Too big to fail

Cold Dark Matter: the small-scale challenges

- The possible solutions
 - Better understanding of baryonic physics
 - Fuzzy dark matter: de Broglie wavelength ~ kpc scale
 - Self-interacting dark matter (SIDM): self-interaction kinematically thermalize the inner halo
 - Difficult for ultralight dark matter

$$\Lambda_{\rm QCD}^4 \left(\frac{a}{f_a}\right)^4 = \frac{m_a^2}{f_a^2} a^4 \qquad \qquad \frac{\alpha^2}{\Lambda^4} (F.F)^2$$

- For mass > 10⁻²¹ eV ultralight bosonic DM
 - The small-scale problems is not solved
 - A solution from Co-Interacting DM scenario

Self-Interacting DM v.s. Co-Interacting DM

• SIDM picture:

self-collisions can cause heat (kinetic energy) transfer

- Co-IDM picture:
 - 1. two DM component DM₁ and DM₂ (two WIMPs example)
 - 2. $\underline{m_1 << m_2}$, relic density fraction $\underline{f_1 >> f_2}$
 - 3. 1-2 interaction cross-section >> 1-1 and 2-2 interactions

• Co-IDM picture:

DM₁ kinetic energy can be transferred through collision with DM₂

 Both DM₁ and DM₂ have similar initial velocity dispersion from gravitational falling

• Co-IDM picture:

DM₁ kinetic energy can be transferred through collision with DM₂

- After the first collision, another DM₁ collides with DM₂
- m₁ << m₂: DM₁ significantly change momentum by one collision, while DM₂ needs (m₂/m₁)² times of scattering (the random walk penalty)

• Co-IDM picture:

DM₁ kinetic energy transferred between different DM₁

- Neglecting DM₂ momentum/energy changes (small f₂ = small total kinetic energy)
- The Net effect: DM₁ particles has kinetic energy transfer between themselves

• Co-IDM picture:

DM₁ kinetic energy transferred between different DM₁

Typical dwarf galaxies

Solution from Co-Interaction DM

 $\rho_{\rm DM} \sim 0.1 {\rm M}_\odot/{\rm pc}^3$, $v_{\rm rel} \sim 50 {\rm km/s}$

 $R_1 = (\sigma_{12} v_{\rm rel}) \rho_{\rm DM_2} / m_2$

 $= f_2(\sigma_{12}v_{\rm rel})\rho_{\rm DM}/m_2 \sim 0.1 {\rm Gyr}^{-1}$

1. For each DM_1 , one collision with DM_2 per 10 Gyr is enough.

2. Due to small mass, one collision for DM_1 is <u>effective</u>.

3. For each DM₂, it has many collisions with DM₁ per 10 Gyr, but its momentum change is suppressed by random walk factors.

Co-Interacting dark matter

- Example model: two component DM
 - ultralight bosonic A' and dark fermion ψ with U(1) interaction

$$\mathscr{L} \supset g' \bar{\psi} \gamma_{\mu} \psi A^{\prime \mu}$$

Co-Interacting dark matter

• Example model: two component DM, A' and dark fermion ψ with U(1) interaction

$$\mathscr{L} \supset g' \bar{\psi} \gamma_{\mu} \psi A^{\prime \mu}$$

- Novelty:
 - 1. A' (DM₁) dominant component, $m_1 << eV$, ultralight 2. ψ (DM₂) dark fermion subdominant, $m_2 \sim$ weak scale
 - Unusual features:
 - 1. A' has large occupation number
 - 2. two components has huge mass difference
- Other assumptions: 1. similar initial velocity dispersion $v_0 \sim 10^{-3}$

2. $f_1 + f_2 = 1$

A' and ψ scattering

$$\psi(k_1)+A'(p_1)\rightarrow\psi(k_2)+A'(p_2)$$

Boltzmann equation

$$egin{aligned} &(\partial_t + v_i \partial_{x_i} + \dot{v}_i \partial_{v_i}) \, \mathcal{N}(\mathbf{x}, \mathbf{p}, \mathbf{t}) = \mathcal{C}(\mathbf{x}, \mathbf{p}, \mathbf{t}) \ & ext{Recall normally it is} \ & \mathcal{N}_1 \mathcal{N}_2 (1 \pm \mathcal{N}_3) \, (1 \pm \mathcal{N}_4) - \mathcal{N}_3 \mathcal{N}_4 (1 \pm \mathcal{N}_1) \, (1 \pm \mathcal{N}_2) pprox (\mathcal{N}_1 \mathcal{N}_2 - \mathcal{N}_3 \mathcal{N}_4) \end{aligned}$$

Collisional kernels in the limit of large occupation number $\mathcal{N}^{A'} \gg 1$

$$C_{\psi} \simeq \sum_{spin} \int \frac{d^{3}\mathbf{p_{1}}d^{3}\mathbf{k_{2}}}{(2\pi)^{5}8m_{A}^{2}m_{\psi}^{2}} |\mathbf{M}(\mathbf{k_{1}},\mathbf{p_{1}},\mathbf{k_{2}},\mathbf{p_{2}})|^{2} \times \delta(E_{k_{1}}+E_{p_{1}}-E_{k_{2}}-E_{p_{2}})\mathcal{N}_{p_{1}}^{A'}\mathcal{N}_{p_{2}}^{A'}\left(\mathcal{N}_{k_{2}}^{\psi}-\mathcal{N}_{k_{1}}^{\psi}\right)$$
$$C_{A'} \simeq \sum_{spin} \int \frac{d^{3}\mathbf{k_{1}}d^{3}\mathbf{k_{2}}}{(2\pi)^{5}8m_{A'}^{2}m_{\psi}^{2}} |\mathbf{M}(\mathbf{k_{1}},\mathbf{p_{1}},\mathbf{k_{2}},\mathbf{p_{2}})|^{2} \times \delta(E_{k_{1}}+E_{p_{1}}-E_{k_{2}}-E_{p_{2}})\mathcal{N}_{p_{1}}^{A'}\mathcal{N}_{p_{2}}^{A'}\left(\mathcal{N}_{k_{2}}^{\psi}-\mathcal{N}_{k_{1}}^{\psi}\right)$$

Novel features

$$\psi(k_1) + A'(p_1) \rightarrow \psi(k_2) + A'(p_2)$$

1. Large occupation number of A'

$$\langle \mathcal{N}^{A'} \rangle \sim \frac{\rho_{A'}/m_{A'}}{m_{A'}^3 v_0^3} \sim 3 \times 10^{76} \times \left(\frac{\rho_{A'}}{0.1 M_{\odot}/\text{pc}^3}\right) \left(\frac{m_{A'}}{10^{-18} \text{eV}}\right)^{-4} \left(\frac{v_0}{10^{-3}}\right)^{-3}$$

2. Suppression from the forward-backward scattering cancellation

$$p \ll k \to \left(\mathcal{N}_{k_2}^{\psi} - \mathcal{N}_{k_1}^{\psi}\right) \sim \mathcal{N}^{\psi} \times \frac{m_{A'}}{m_{\psi}}$$

3. Random walk suppression from multiple scattering for ψ $\Gamma_{\psi} \equiv \frac{C_{\psi}}{\mathcal{N}_{\psi}}, \quad \Gamma_{\psi}^{\text{eff}} \simeq \Gamma_{\psi} \frac{m_{A'}^2}{m_{\psi}^2}$

"effective" = collision rate with significant momentum change

A' and ψ effective scattering rate

 $\psi(k_1) + A'(p_1) \rightarrow \psi(k_2) + A'(p_2)$

The dark atom laser emission

$$\psi(k_1) + A'(p_1) \rightarrow \psi^* \rightarrow \psi(k_2) + A'(p_2)$$

• A' dominates relic abundance

$$\Gamma_{A'}^{\text{eff}} \simeq \Gamma_{A'} \equiv \frac{C_{A'}}{\mathcal{N}_{A'}} \simeq n_{\psi} \langle \sigma v \rangle_{\psi A'} \langle \mathcal{N}^{A'} \rangle \left(\frac{m_{A'}}{m_{\psi}}\right)$$

The dark atom laser emission

$$\psi(k_1) + A'(p_1) \rightarrow \psi^* \rightarrow \psi(k_2) + A'(p_2)$$

A' and ψ effective scattering rate

 $\psi(k_1) + A'(p_1) \rightarrow \psi(k_2) + A'(p_2)$

In typical dwarf galaxies

- For light DM (0.1-1)GeV to be detectable in both direct and indirect exp, model building is necessary.
- For ultralight bosonic DM, small scale problems can be solved .
 - e.g. dark atom laser emission $\psi(k_1) + A'(p_1) \rightarrow \psi^* \rightarrow \psi(k_2) + A'(p_2)$

Thank you!

Backup slides

Dark pion model

Neutrino oscillation in a dark matter medium

$$V_{\text{eff}} = -\frac{1}{2E_{\nu}} \left(2(p_{\nu} \cdot \phi)gQ + g^2Q^2\phi^2 \right)$$

- Linear term (Classic = Quantum forward scattering):
 - Only for fully polarized vector DM

 $\phi_{\mu} = \xi_{\mu}\phi_0 \cos(m_{\phi}t)$ $Q_{\mu-\tau} = 0, 1, -1$

Full Hamiltonian

- Quadratic term (Classic = Quantum forward scattering): $H = V_{
 m vac} + V_{
 m MSW} + V_{
 m eff}$
 - both fully polarized or unpolarized

Solving Schrödinger equation

$$H_{\beta\alpha} |\alpha\rangle = i\partial_t |\beta\rangle$$
$$P_{\alpha\beta}(t) = |\langle \alpha(t) |\beta(0) \rangle|^2$$

Neutrino oscillation constraint on DM interaction

Constraint on coupling g/m_{DM} < 10⁻⁹ (10⁰) eV⁻¹

A' and ψ effective scattering rate

 $\psi(k_1) + A'(p_1) \rightarrow \psi(k_2) + A'(p_2)$

