XENON1T and Beyond: the Search for *Heavy* and *Light* Dark Matter Particles

Kaixuan Ni University of California San Diego (on behalf of the XENON Collaboration)

PKU DM Workshop, Beijing, 10/16/2019

Heavy, Low-mass and Light Dark Matter

Dark Sector Candidates, Anomalies, and Search Techniques

US Cosmic Visions: New Ideas in Dark Matter 2017, 1707.04591

Heavy DM: limits improved by 5 orders of magnitude in the last 20 years

Low-mass DM: limits improved by 4 orders of magnitude in the last 10 years

Expected nuclear recoil event rates from WIMPs

Low-mass WIMPs

Heavy WIMPs

Two-phase Xenon detectors for both Heavy and Light Dark Matter

With both S1 and S2 signals (TPC mode):

- Low threshold: keV (set by S1: 2-3 PE)
 - Corresponding S2: > 200 PE
- Ultra-low background
 - 3D fiducialization
 - ER/NR discrimination with S2/S1

With S2-only signal (EC - Electron Counting mode):

- Ultra-low threshold: 10-100 eV (set by S2)
 - single e- signal: 10~100 PE
- Background control a challenge:
 - No ER/NR discrimination
 - Only XY position determined, no Z
 - Known/unknown source of single/few electrons

The three most constraining limits for heavy dark matter interaction are all from liquid xenon based experiments.

The Era of Liquid Xenon Time Projection Chambers

LUX Active Target: ~250 kg Location: US decommissioned PandaX-II Active Target: ~580 kg Location: China Data-taking: 2016-2019 finished data taking

XENONIT Active Target: 2000 kg Location: Italy Data-taking: 2016-2018 decommissioned

The XENON Dark Matter Search Program

XENON10XENON100XENON1TXENONnT

2005-2007	2008-2016	2012-2018	2019-2025
25 kg - 15cm drift	161 kg - 30 cm drift	3.2 ton - 1 m drift	8 ton - 1.5 m drift
~10 ⁻⁴³ cm ²	~10 ⁻⁴⁵ cm ²	~10 ⁻⁴⁷ cm ²	~10 ⁻⁴⁸ cm ²

The XENON International Collaboration

3 continents, 26 institutions, 165 members

Central Detector Components

The XENON1T Detector and Water Shield/Veto

The XENON1T Dark Matter Experiment EPJ (2017), arXiv:1708.07051

XENON1T Data taking

279 live-days low background physics data collected between Nov. 2016 and Feb. 2018. More data (SR2) collected until end of 2018.

Instrument & Projection JCAP 04, 027 (2016), 1512.07501 EPJ C 77, 881 (2017), 1708.07051

Analysis papers:

PRD 99, 112009 (2019), 1902.11297 PRD 100, 052014 (2019), 1906.04717 Physics results: PRL 119,181301 (2017): first result PRL121, 111302 (2018): SI PRL 122, 071301 (2019): WIMP-pion PRL 122, 141301 (2019): SD Nature, 568, 532 (2019): Xe124 DEC arXiv:1907.11485 (PRL): light DM arXiv:1907.12771 (PRL): Migdal effect

Detector Calibrations

^{83m}Kr: to calibrate the energy response

²²⁰Rn: to calibrate the Electronic Recoil (ER) background from ²²²Rn

Energy response with fixed energy gammas

Calibrating Electronic and Nuclear Recoils

XENON1T achieved the lowest electronic recoil background, with major contribution from remaining Radon-222 (~10 μ Bq/kg)

The ultra-low Electronic recoils (ER) background allows the search for other rare processes in nature.

Other three main types of background: Surface, Accidental Coincidence, Radiogenic neutrons

Observation of two-neutrino double electron capture in Xe-124 with XENON1T

Nature, 568 (2019)

Xe-124 2 ν ECEC half-life measured: $[1.8 \pm 0.5(sys) \pm 0.1(stat)]x10^{22}$ years

Surface Background, from reduced-S2 events from Rn-daughters on the PTFE surface

Accidental Coincidence (AC)

Radiogenic neutrons

Simulated NR single-scatter rate

Source	Rate [t ⁻¹ y ⁻¹]	Fraction [%]
Radiogenic n	0.6 ± 0.1	96.5
CEvNS	0.012	2.0
Cosmogenic n	< 0.01	< 2.0

(Expectations in 4-50 keV search window, 1t FV, single scatters)

JCAP04 (2016) 027

verify the neutron rate with multiple scattered NR events in data

One ton-year of data, after unblinding

Phys.Rev.Lett.121, 111302 (2018) (arXiv:1805.12562)

Piecharts indicate the relative PDF of background and the best-fit of 200 GeV/c² WIMPs at cross-section of 4.7x10⁻⁴⁷ cm²

One ton-year of data, after unblinding Phys.Rev.Lett.121, 111302 (2018) (arXiv:1805.12562)

XENON1T

placed the most stringent constraints for heavy WIMPs above 6 GeV/c²

- 279 days data in 1.3 ton (1.0 ton yr)
- Energy region: 5-41 keVnr (1.4-10.6 keVee)
- ER background: 82 evts/ton/yr/keVee
- Best SI limit: 4.1 x10⁻⁴⁷ cm² at 30 GeV/c²

- same data as for the SI search
- Xe129 (29.5%), Xe131 (23.7%)
- best SD-neutron limit: 6.3x10⁻⁴² cm² at 30 GeV/c²

From XENON1T to XENONnT

Upgrade from XENONIT to XENONnT

Basic characteristics of XENON1T & nT TPCs

	XENON1T	XENONnT
Drift (cm)	97	148
Diameter (cm)	96	133
# of PMTs (R11410)	248	494
Active Mass (tonne)	2.0	5.9
Total Mass (tonne)	3.2	8.4

XENONIT to XENONnT: Reduce Rn background by 1/10

Material selection with ²²²Rn screening

- screening facilities with few atoms/probe sensitivit
- Replace parts with large Rn contribution
- Post-manufacturing surface treatment
- Reduction with high through-put online distillation
- Goal: 1 µBq/kg

Online Rn removal with distillation tested in XENON100 and XENON1T

⁽Eur. Phys. J. C, 77:358, 2017)

XENONIT to XENONnT: reduce nuclear recoil background

2.0

2.5

3.0

3.5

4.0

Fiducial volume [tonnes]

4.5

5.0

5.5

Neutron-veto efficiencv

0.2% Gd-loaded water neutron-veto

Upgrade in the making

Great discovery potential

Prospect of the global heavy dark matter search

XENON1T's S2-only results for Low-Mass Dark Matter Nuclear Recoil Scattering

arXiv:1907.11485

- Threshold: ~200 eVee (4~5 e-)
- Exposure: 22 tonne-days (60 kg-year)
- Background: ~1 event/keVee/tonne/day (>400 eVee)

Background for S2-only Events

SD-neutron scattering

SI with light mediator

Status of the Low-mass (GeV-scale) Dark Matter Searches

Need a reasonable large target mass (~100 kg).

Light DM Search with the Migdal effect

- Migdal effect in dark matter detection
 - Masahiro Ibe et al, arXiv:1707.07258, Dolan et al., 1711.09906
 - atomic electrons lags behind recoil nucleus resulting in ionization/excitation of atoms

XENON1T, arXiv:1907.12771

Expected rate for SI cross section of 10⁻³⁵ cm²

Looking for "Migdal" electron recoil signals from sub-GeV DM produced nuclear recoils

XENON1T, arXiv:1907.12771

Searching for light dark matter interaction with electrons

Single and a few electron rate in the LXe bulk

10~100/kg/day at single e-

- Background at a few electron level is not always going down with increasing target mass.
- We now understood much better the sources of these background electrons.

XENON1T S2-only search for dark matter electron scattering

The search is limited by background (not target mass or threshold). For future: background understanding and suppression needed

Dark photon dark matter absorption & Axion-like particles

Summary

- XENON1T achieved the lowest background among any DM search experiments with more than one-tonne of target
- XENON1T has set the most constraining limits across a large mass range for heavy DM, low-mass DM, light DM, dark photon and axionlike particles.
- With the upcoming XENONnT, together with PandaX-4T, LZ and DarkSide-20k, the next few years of dark matter hunting will be VERY exciting!