updated CEPC EW inputs

July 17, 2019

	reference	abso	absolute uncertainties relative uncertainties		inties	major		
CEPC	SM value	$\Delta_{\rm tot}$	Δ_{stat}	$\Delta_{\rm sys}$	$\delta_{\rm tot}$	δ_{stat}	$\delta_{\rm sys}$	uncertainty
m_Z	91.1876	$0.5\mathrm{MeV}$	_	$0.5{ m MeV}$				ΔE_{beam}
Γ_Z	$2.4950\mathrm{GeV}$	$0.5\mathrm{MeV}$	_	$0.5\mathrm{MeV}$				
$\sigma_{\rm had}$	41.484 nb	$0.005\mathrm{nb}$	$0.00005\mathrm{nb}$	$0.005\mathrm{nb}$				
R_e	20.743	0.005	0.0004	0.005	0.0003			t-channel
R_{μ}	20.743	0.002	0.0004	0.002	0.0001			photon ID and scale
R_{τ}	20.743	0.003	0.0006	0.003	0.0002			tau ID (electron fake tau)
R_b	0.21578				0.0002			
R_c	0.17226				0.001			
$A_{\rm FB}^{0,e}$	0.0163	0.00018	_	0.00018	0.01			<i>t</i> -channel
$A_{\rm FB}^{0,\mu}$	0.0163	7.5×10^{-5}	5×10^{-6}	7.5×10^{-5}	0.005			Ebeam
$A_{\rm FB}^{0, au}$	0.0163	7.5×10^{-5}	_	7.5×10^{-5}	0.005			Ebeam
$A_{\rm FB}^{0,\overline{b}}$	0.1032	0.0001	0.00002	0.0001	0.001			
$A_{\rm FB}^{0,c}$	0.0738	0.0002	0.00003	0.0002	0.003			
$A_e \ (\tau \ \mathrm{pol})$	0.1515 (PDG)				0.0003	0.0003	0.0001	statistics
$A_{\tau} (\tau \text{ pol})$	0.1430 (PDG)				0.0005	0.00015	0.0005	tau ID

Table 1: CEPC inputs. The "SM value" shows the SM prediction except for m_Z (which is an input for SM), and only serves as a reference. Entries filled with"–" denotes that the corresponding uncertainty is irrelevant.

	$BR(W \to e\nu)$	$BR(W \to \mu\nu)$	$BR(W \to \tau \nu)$	$BR(W \to jj)$
CEPC	3×10^{-4}	3×10^{-4}	4×10^{-4}	1×10^{-4}

Table 2: CEPC projections for W branching ratios measurements. (Same as FCC-ee projections.)

1 notes

This document provides some projections of the CEPC Z-pole measurements. We list below some of the dominate sources of systematic uncertainties. Note that we do not include any theory uncertainties, *e.g.* the QCD uncertainties in R_b , R_c , $A_{\rm FB}^{0,c}$ and $A_{\rm FB}^{0,c}$.

• σ_{had} : dominated by systematics. A relative uncertainty of ~ 10⁻⁴ from luminosity determination and ~ 10⁻⁴ from other sources are assumed. The luminosity uncertainty comes from the theory uncertainty of Bhabha (BB) scattering cross section $(e^+e^- \rightarrow e^+e^-)$,

$$\frac{\#BB}{\#Z_{had}} = \frac{\mathcal{L}}{\mathcal{L}} \frac{\sigma_{BB}}{\sigma_{had}}, \qquad (1.1)$$

- R_e : The dominate systematics comes from the contamination of the *t*-channel diagram, which makes its precision worse than the one of R_{μ} .
- R_{μ} dominated by uncertainty of σ_{had} ? Looks like the case for us, but does not work for FCC-ee. but maybe uncertainty of σ_{bb} cancel
- R_{τ} electron background (need Granularity improvement?) systematics 10 times better than LEP
- $A_{\rm FB}^{0,e}$: The dominate systematics comes from the contamination of the *t*-channel diagram.
- $A_{\rm FB}^{0,\mu}$: The dominate systematics comes from the beam energy measurement. This has an impact on the determination of the center of mass frame.
- A_{τ} : measured from $Z \to \tau \tau$ events. The best measured channel is $\tau \to \rho \nu_{\tau}$, and its main uncertainty comes from photon ID. The statistical uncertainty is at the same order but a few factor smaller, so systematics still dominates.
- A_e (from tau polarization) statistical dom? LEP also A_e systematics smaller than A_{τ} , so in our case sys scale from the one of A_{τ} is negligible
- R_b gluon splitting LEP 0.00023, FCC assume factor of 2 improvement, we assume it goes to 10^{-5} , (FCC-ee should get 0.0006?) anyway, we assume no theory uncertainty
- R_c scale from LEP...