
CEPC EWK white paper

Zhijun Liang

Institute of High Energy Physics, Chinese Academy of Science

Introduction to CEPC

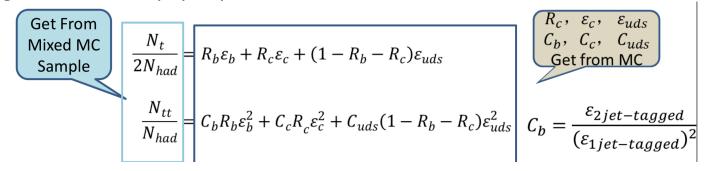
- CEPC is Higgs Factory (E_{cms}=240GeV, 10⁶ Higgs)
- CEPC is Z factory($E_{cms} \sim 91 \text{GeV}$), electroweak precision physics at Z pole.
 - baseline L=1.6 X 10^{35} cm⁻²s⁻¹, Solenoid =3T, $3X10^{11}$ Z boson, two years
 - L= $3.2 \times 10^{35} \text{ cm}^{-2}\text{s}^{-1}$, Solenoid = 2T, $6\times 10^{11} \text{ Z boson}$
- WW threshold scan runs (~160GeV) are also expected.
 - One year, Total luminosity 2.6 ab⁻¹ 14M WW events

From F. Bedeschi

Electroweak global fit

Review of the key electroweak constant

Fundamental constant	δx/x	measurements	
$\alpha = 1/137.035999139 (31)$	1×10 ⁻¹⁰	$\mathrm{e}^{\pm}g_2$	Z pole
$G_F = 1.1663787 (6) \times 10^{-5} \text{ GeV}^{-2}$	1×10 ⁻⁶	μ^{\pm} lifetime	
$M_Z = 91.1876 \pm 0.0021 \text{ GeV}$	1×10 ⁻⁵	LEP	Z pole
$M_W = 80.379 \pm 0.012 \text{ GeV}$	1×10 ⁻⁴	LEP/Tevatron/LHC	WW run
$sin^2\theta_W = 0.23152 \pm 0.00014$	6×10 ⁻⁴	LEP/SLD	Z pole
$m_{top} = 172.74 \pm 0.46 \text{ GeV}$	3×10 ⁻³	Tevatron/LHC	
$M_H = 125.14 \pm 0.15 \text{ GeV}$	1×10 ⁻³	LHC	ZH runs


From PDG2018

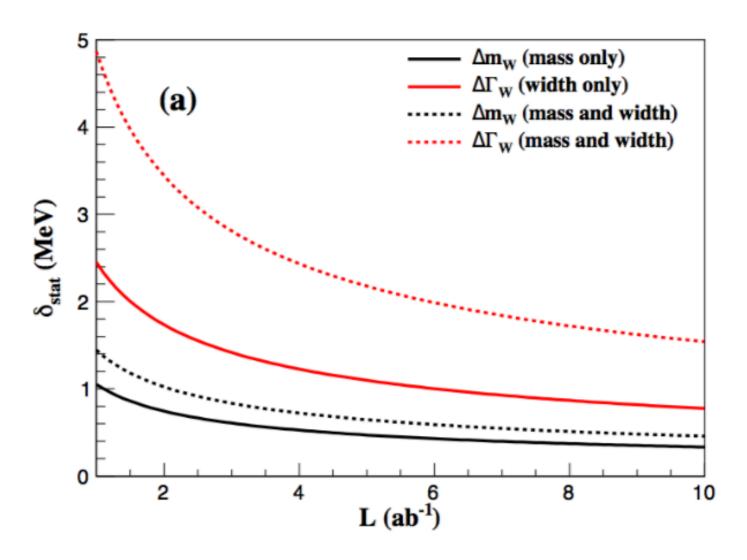
Summary of EWK section

- New measurements (Hao Zhang)
 - Exotic Z-decay
 - energy correlations measurements
- EFT (Higgs + EWK), Jiayin Gu
- New EWK fit, Top FCNC, Cen Zhang
 - Combing different experiments in different energy scale
- R_b measurement (LI Bo)
 - B tagging and Systematics study
- W mass measurement with Threshold scan (Peixun Shen, Gang Li)
- LHC EWK input and Z->4l (Yu Sheng)
- More details can be found
 - https://indico.ihep.ac.cn/event/9832/other-view?view=standard

White paper: R b from Z->bb

- R_b
 - B tagging and systematics study
 - Correlation of b tagging systematics between two bjets
 - Good progress, toward a paper publication

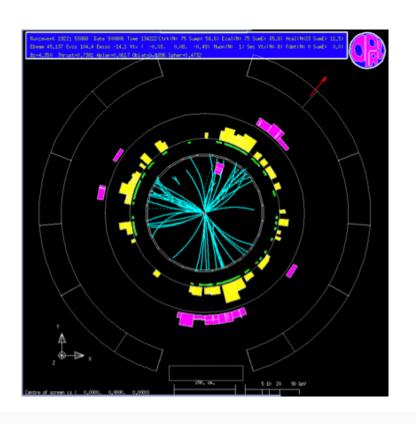
LEP like working point 60% purity


Bo Li (Yantai University)

CEPC working point 99% purity

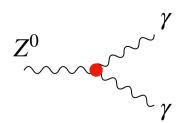
	(Measured Rb-0.2158)/0.2158					
	Prob>0.6	Prob>0.70	Prob>0.80	Prob>0.90	Prob>0.95	Prob>0.99
$\epsilon_{\rm c} \pm 10\%$	0.55%	0.34%	0.19%	0.09%	0.05%	0.01%
ϵ_{uds} $\pm 10\%$	0.21%	0.14%	0.10%	0.06%	0.04%	0.02%
$C_b \pm 10\%$	10.12%	10.09%	10.08%	10.06%	10.06%	10.05%

Statistics error on W mass Vs Luminosity


- Paper draft ready on WW threshold scan study Peixun Shen (Nankai)
 - Plan to submit to EPJC

New idea on Z pole

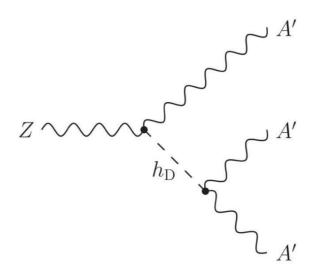
- Z->γ γ search : Exotics decay search, need high statistics (TeV Z)
- Energy correlations study


Well defined (non-artificial) quantity

Energy-Energy Correlation

$$\frac{d\Sigma}{d\cos\chi} = \sum_{i,j} \int \frac{E_i E_j}{Q^2} \delta(\vec{n}_i \cdot \vec{n}_j - \cos\chi) d\sigma,$$

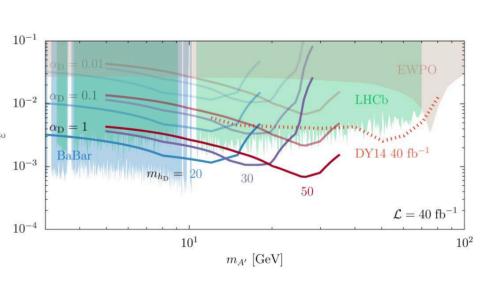
Hao Zhang (IHEP)



Ideas of Using $Z \rightarrow 4I$ decays to Search for BSM

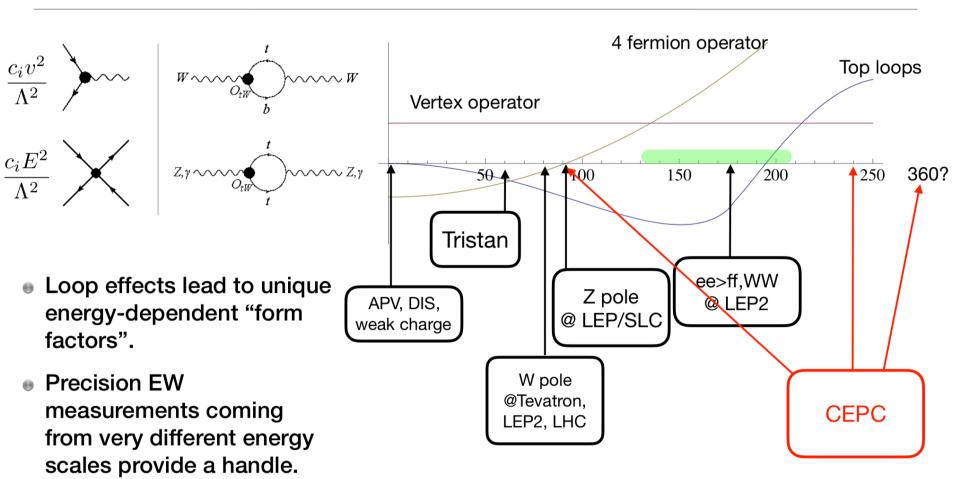
- $Z\rightarrow 4l$, 6l have good sensitivity to BSM physics
- At CEPC, Z bosons are produced at rest, lepton pT would be even lower, this requires some care about low momentum measurement

For instance arXiv:1710.07635v2


Yusheng (USTC)

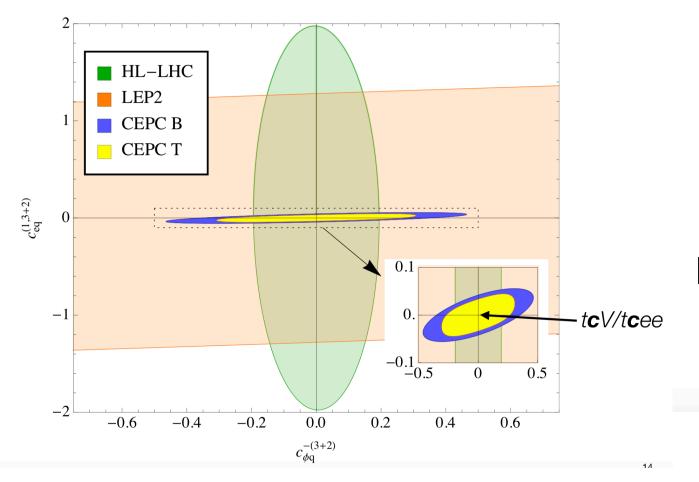
Rare decays of Z to multiple leptons can have good sensitivity to its portal to dark / hidden sector

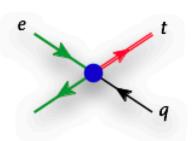
LHC could give sensitive constraints $^{10^{-3}}$ of dark photon with O(10) GeV mass range


CEPC can do better with large amount of Zs and precise detector?

Top coupling in EWK fit

EW fit: top couplings enter through loops

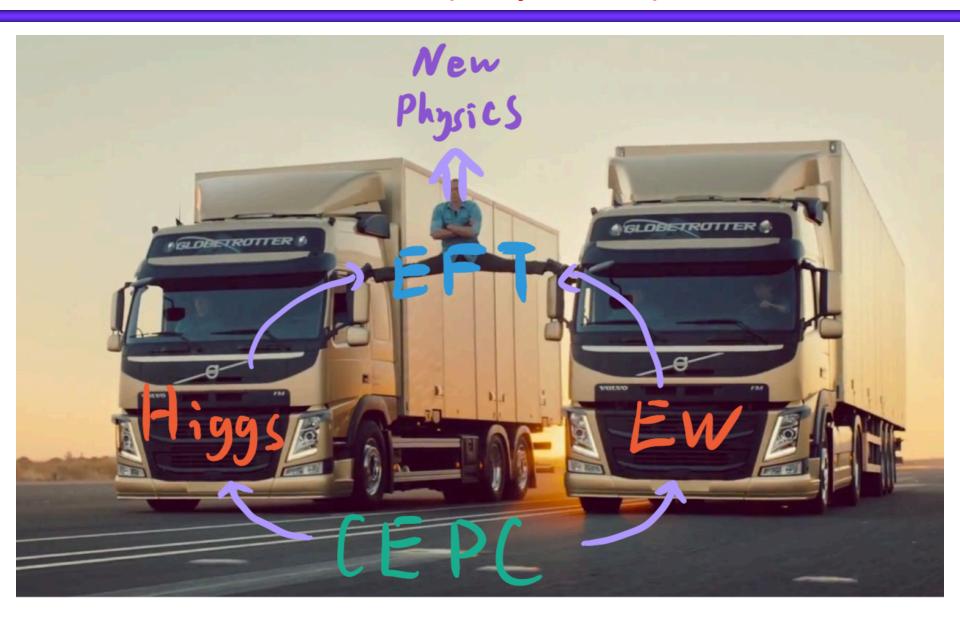

Cen Zhang



Top coupling in EWK fit

- CEPC has shown good potential in constraint top coupling
 - Without ttbar threshold runs
 - Significantly better than HL-LHC 4f coupling

Cen Zhang(IHEP)
Liaoshan Shi (IHEP)



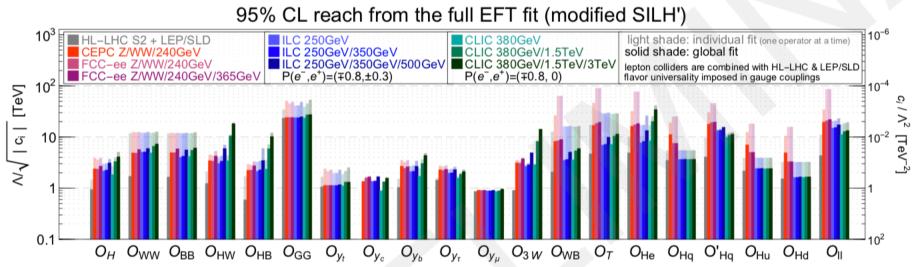
E⁴/m_z⁴ scaling enhancement

4f: 120 fb 预数

EFT fit (Jiayin Gu)

EFT fit

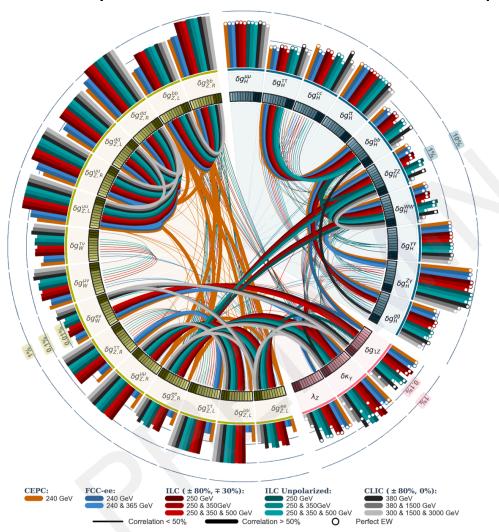
- Higgs + aTGC + EW = 28 parameters in our framework
 - Some operators can only be probed with the Higgs particle.


You can't really separate Higgs from the rest of the SM!

$$\begin{array}{ll} \bullet & \mathcal{O}_{H\ell} = i H^\dagger \overleftrightarrow{D_\mu} H \bar{\ell}_L \gamma^\mu \ell_L, \\ \mathcal{O}_{H\ell}' = i H^\dagger \sigma^a \overleftrightarrow{D_\mu} H \bar{\ell}_L \sigma^a \gamma^\mu \ell_L, \\ \mathcal{O}_{He} = i H^\dagger \overleftrightarrow{D_\mu} H \bar{e}_R \gamma^\mu e_R \\ \text{(or the ones with quarks)} \end{array}$$

- modifies gauge couplings of fermions,
- also generates hVff type contact interaction.

Jiayin Gu (Mainz)

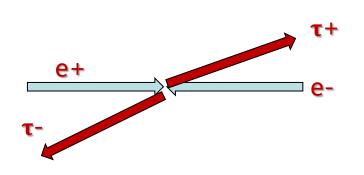


EFT fit

EPS2019 highlight figure

- CEPC provide more details input
- They can fit correlations between EFT operators

Jiayin Gu (Mainz)


- Precision reach on the outside...
- Correlations on the inside...
- Without future Z-pole run ⇒ larger correlation among the hWW, hZZ couplings, aTGCs and the Zee couplings.

CEPC EWK input to ECFA

	Γ_Z	$\sigma_{ m had}$		$A_e \ (\tau \ \mathrm{pol})$	$A_{\tau} \ (\tau \ \mathrm{pol})$
CEPC	$0.5\mathrm{MeV}$	$0.005\mathrm{nb}$		0.0003	0.0005
FCC-ee	$0.1\mathrm{MeV}$	$0.005\mathrm{nb}$		_	_
	R_e	R_{μ}	$R_{ au}$	R_b	R_c
CEPC	0.0003	0.0001	0.0002	0.0002	0.001
FCC-ee	0.0003	0.00005	0.0001	0.0003	0.0015
	$A_{ m FB}^{0,e}$	$A_{ m FB}^{0,\mu}$	$A_{ m FB}^{0, au}$	$A_{ m FB}^{0,b}$	$A_{ m FB}^{0,c}$
CEPC	0.005	0.003	0.005	0.001	0.003
FCC-ee	_	_	_	_	_
(fitted)	A_e	A_{μ}	$A_{ au}$	A_b	A_c
CEPC	0.0003	0.003	0.0005	0.001	0.003
FCC-ee	0.0001	0.00015	0.0003	0.003	0.008

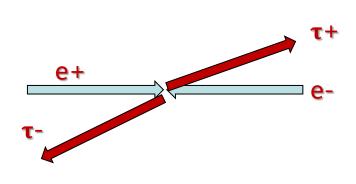
Table 1: A comparison of CEPC and FCC-ee Z-pole inputs. All uncertainties are relative (normalized to 1) except for Γ_Z and σ_{had} . " τ pol" denotes that the measurement is from τ polarization in $Z \to \tau^+\tau^-$. The 5 fitted asymmetry observables $(A_{e,\mu,\tau,b,c})$ are derived from a simutanous fit of all the A_{FB}^0 observables as well as the A_e and A_{τ} from τ polarization.

A_e and A_τ in Z-> $\tau\tau$ (τ polarization)

$$A_{\text{FB}} = \frac{\sigma_{\text{F}} - \sigma_{\text{B}}}{\sigma_{\text{F}} + \sigma_{\text{B}}}$$

$$A_{\text{LR}} = \frac{\sigma_{\text{L}} - \sigma_{\text{R}}}{\sigma_{\text{L}} + \sigma_{\text{R}}} \frac{1}{\langle |\mathcal{P}_{\text{e}}| \rangle}$$

$$A_{\text{LRFB}} = \frac{(\sigma_{\text{F}} - \sigma_{\text{B}})_{\text{L}} - (\sigma_{\text{F}} - \sigma_{\text{B}})_{\text{R}}}{(\sigma_{\text{F}} + \sigma_{\text{B}})_{\text{L}} + (\sigma_{\text{F}} + \sigma_{\text{B}})_{\text{R}}} \frac{1}{\langle |\mathcal{P}_{\text{e}}| \rangle}$$


• A_e and A_τ w/o polarization info

(derived)	A_e	A_{μ}	$A_{ au}$	A_b	A_c
CEPC	0.0025	0.0039	0.0056	0.0027	0.0039
FCC-ee	0.0001	0.00015	0.0003	0.003	0.008

A_e and A_τ with polarization info (from tau or from beam)

(fitted)	A_e	A_{μ}	$A_{ au}$	A_b	A_c
CEPC	0.0003	0.003	0.0005	0.001	0.003
FCC-ee	0.0001	0.00015	0.0003	0.003	0.008

A_e and A_τ: tau polarization

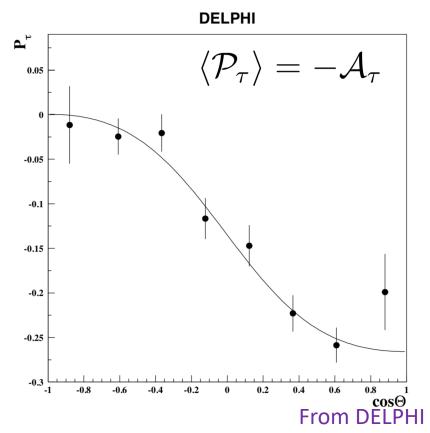
$$A_{\text{FB}} = \frac{\sigma_{\text{F}} - \sigma_{\text{B}}}{\sigma_{\text{F}} + \sigma_{\text{B}}}$$

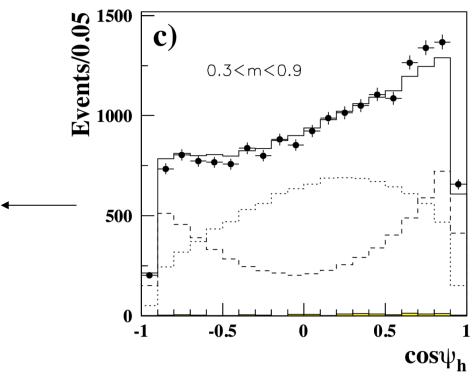
$$A_{\text{LR}} = \frac{\sigma_{\text{L}} - \sigma_{\text{R}}}{\sigma_{\text{L}} + \sigma_{\text{R}}} \frac{1}{\langle |\mathcal{P}_{\text{e}}| \rangle}$$

$$A_{\text{LRFB}} = \frac{(\sigma_{\text{F}} - \sigma_{\text{B}})_{\text{L}} - (\sigma_{\text{F}} - \sigma_{\text{B}})_{\text{R}}}{(\sigma_{\text{F}} + \sigma_{\text{B}})_{\text{L}} + (\sigma_{\text{F}} + \sigma_{\text{B}})_{\text{R}}} \frac{1}{\langle |\mathcal{P}_{\text{e}}| \rangle}$$

Weak mixing angle

extracted from A_e and A_τ using tau polarization: more precise


	Number	Purity of	
τ decay mode	selected decays	the samples $(\%)$	
$ au o e \nu_e \nu_ au$	18434	89.4 ± 0.1	$A_{ m LRFB}$ \checkmark
$ au o \mu u_{\mu} u_{ au}$	19811	94.3 ± 0.1	\rightarrow A, and A
$ au o \pi/K u_ au$	14850	73.2 ± 0.1	$P_{\tau}(\cos\theta)$
$ au o ho u_{ au}$	26548	75.4 ± 0.1	
$ au o a_1 u_{ au}$	9446	53.2 ± 0.2	


A_e and A_τ in $Z \rightarrow \tau\tau$

Tau polarization can be measured through its decay product

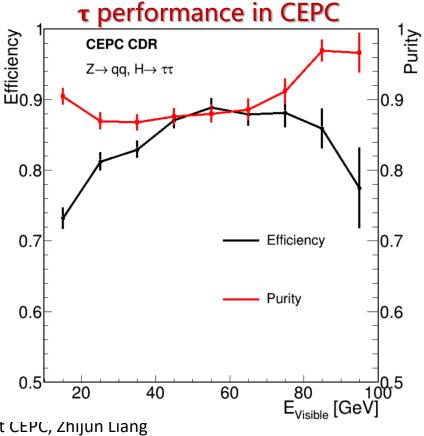
$$P_{\tau}(\cos \theta) = -\frac{\mathcal{A}_{\tau}(1 + \cos^2 \theta) + \mathcal{A}_{e}(2\cos \theta)}{(1 + \cos^2 \theta) + \frac{4}{3}\mathcal{A}_{fb}(2\cos \theta)}$$

Eur. Phys. J. C 14, 585-611 (2000)

A_e and A_τ in $Z \rightarrow \tau \tau$: systematics

Current precision

 $-A_e: 0.1515 \pm 0.0019 (PDG)$

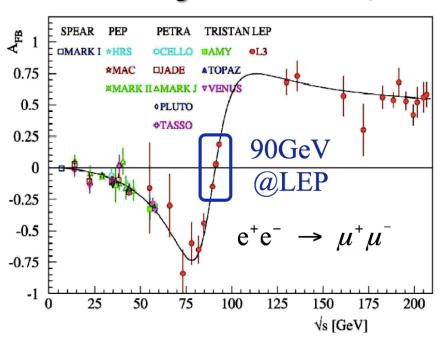

 $-A_{\tau}$: 0.143 \pm 0.004 (PDG)

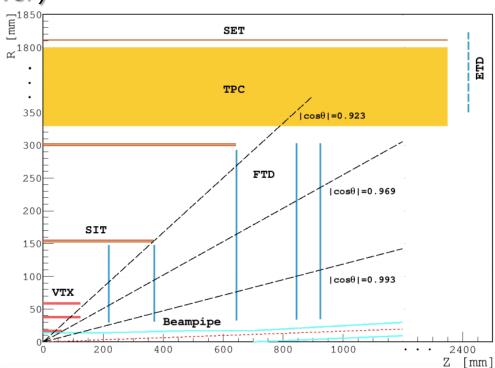
CEPC:

- A_{τ} : Key systematics is from EM scale, and τ identification

A_e limited by statistics

CEPC precision	Rel stat unc.	Rel total unc.
A_{τ}	2X10 ⁻⁴	5X10 ⁻⁴
A_{e}	3X10 ⁻⁴	3X10 ⁻⁴


Backward-forward asymmetry in Z->µµ


- LEP measurement: 0.0169 +-0.00130
- CEPC expected:

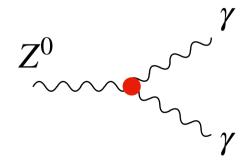
+-0.00005

 $A_{FB}^{(0,\mu)}$

- CEPC has potential to improve it by a factor of 20~30.
 - Acceptance systematics (larger detector coverage, smaller syst.)
- Major systematics (absolute value.)
 - Beam energy systematics (5e-5, assuming 500keV E_{beam} unc.)
 - Muon angular resolution (1e⁻⁵ level)

Summary

- Welcome to join CEPC EWK study
 - Input for ECFA (to be documented in short writeup)
 - In one month timescale
 - http://cepcgit.ihep.ac.cn/CEPC-White-Paper/electroweak-physics


- Longer term goal for white paper
 - More details study on systematics in each measur
 - R_b
 - W mass
 - A_e and A_τ in $Z->\tau\tau$ (τ polarization)
 - aTGCs
 - Z rare decay (Direct search for new physics)

Backup: Summary of workshop

Exotic Z-decay

Exotic decays	Topologies	$n_{\rm res}$	Models
$Z \to \cancel{E} + \gamma$	$Z \to \chi_1 \chi_2, \chi_2 \to \chi_1 \gamma$	0	1A: $\frac{1}{\Lambda_{1A}}\bar{\chi_2}\sigma^{\mu\nu}\chi_1B_{\mu\nu}$ (MIDM)
	$Z o \chi ar{\chi} \gamma$	0	1B: $\frac{1}{\Lambda_{s}^3} \bar{\chi} \chi B_{\mu\nu} B^{\mu\nu}$ (RayDM)
	$Z \to a \gamma \to (\cancel{E}) \gamma$	1	1C: $\frac{1}{4}\frac{1}{4}aB_{\mu\nu}\tilde{B}^{\mu\nu}$ (long-lived ALP)
	$Z o A' \gamma o (\bar{\chi} \chi) \gamma$	1	1D: $e^{\mu\nu\rho\sigma}A'_{\mu}B_{\nu}\partial_{\rho}B_{\sigma}$ (Wess-Zumino terms)
$Z o \cancel{E} + \gamma \gamma$	$Z \to \phi_d A', \phi_d \to (\gamma \gamma), A' \to (\bar{\chi} \chi)$	2	2A: Vector portal
	$Z \to \phi_H \phi_A, \ \phi_H \to (\gamma \gamma), \ \phi_A \to (\bar{\chi} \chi)$	2	2B: 2HDM extension
	$Z \to \chi_2 \chi_1, \chi_2 \to \chi_1 \phi, \phi \to (\gamma \gamma)$	1	2C: Inelastic DM
	$Z \to \chi_2 \chi_2, \chi_2 \to \gamma \chi_1$	0	2D: MIDM
$Z \rightarrow E + \ell^+ \ell^-$	$Z o \phi_d A', A' o (\ell^+ \ell^-), \phi_d o (\bar{\chi}\chi)$	2	3A: Vector portal

Summary of workshop

Loops as "direct" probes

Consider Z(->II) + H

Under T transformation without interchanging the initial and final states,
$$\frac{d^3\sigma}{d\cos\Theta d\cos\theta d\phi} \rightarrow \underbrace{F_1(1+\cos^2\theta) + F_2(1-3\cos^2\theta) + F_3\sin2\theta\cos\phi + F_4\sin^2\theta\cos2\phi}_{\text{T-even}} \\ + \underbrace{F_5\cos\theta + F_6\sin\theta\cos\phi - F_7\sin\theta\sin\phi - F_8\sin2\theta\sin\phi - F_9\sin^2\theta\sin2\phi}_{\text{T-even}},$$
 Define T-odd asymmetries (A_7, A_8, A_9) by
$$A_{(7,8,9)} \equiv \frac{F_{(7,8,9)}}{F_1}, \qquad A_7 \propto \frac{N(\sin\phi>0) - N(\sin\phi<0)}{N(\sin\phi>0) + N(\sin\phi<0)} \text{ etc}$$
 8/11

You can't really separate Higgs from the rest of the SM!

$$\begin{array}{ll} \blacktriangleright \ \mathcal{O}_{H\ell} = i H^\dagger \overleftrightarrow{D_\mu} H \bar{\ell}_L \gamma^\mu \ell_L, \\ \mathcal{O}_{H\ell}' = i H^\dagger \sigma^a \overleftrightarrow{D_\mu} H \bar{\ell}_L \sigma^a \gamma^\mu \ell_L, \\ \mathcal{O}_{He} = i H^\dagger \overleftrightarrow{D_\mu} H \bar{e}_R \gamma^\mu e_R \\ \text{(or the ones with quarks)} \end{array}$$

- modifies gauge couplings of fermions,
- also generates hVff type contact interaction.

