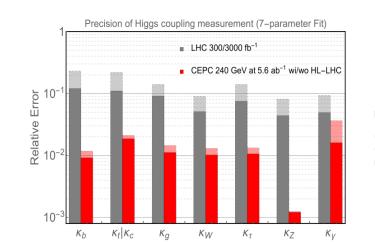


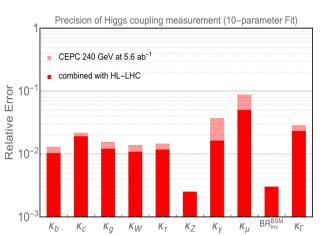
Higgs at 360GeV Extrapolation @ PKU Workshop

Kaili Zhang

Higgs Physics @ CEPC

Kaili Zhang


 Z^*


Existing results:240GeV, 5.6iab

(240GeV,5.6ab ⁻¹)	CDR	2019.07
$\sigma(ZH)$	0.50%	
$\sigma(ZH) * Br(H \rightarrow bb)$	0.27%	
$\sigma(ZH) * Br(H \rightarrow cc)$	3.3%	
$\sigma(ZH) * Br(H \rightarrow gg)$	1.3%	
$\sigma(ZH) * Br(H \rightarrow WW)$	1.0%	
$\sigma(ZH) * Br(H \rightarrow ZZ)$	5.1%	
$\sigma(ZH) * Br(H \rightarrow \tau\tau)$	0.8%	
$\sigma(ZH) * Br(H \rightarrow \gamma \gamma)$	6.8%	5.4%
$\sigma(ZH) * Br(H \rightarrow \mu\mu)$	17%	12%
$\sigma(vvH) * Br(H \rightarrow bb)$	3.0%	
$Br_{upper}(H \rightarrow inv.)$	0.41%	0.2%
$\sigma(ZH) * Br(H \rightarrow Z\gamma)$	16%	
Width	2.8%	

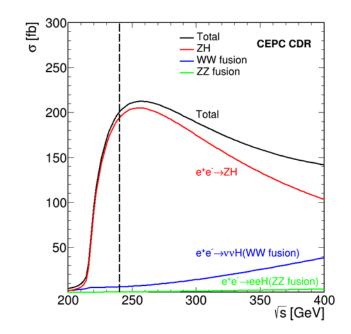
Relative coupling measurement precision and the 95% CL upper limit on ${\rm BR}_{\rm inv}^{\rm BSM}$						
	10-p	arameter fit	7-parameter fit			
Quantity	CEPC	CEPC+HL-LHC	CEPC	CEPC+HL-LHC		
κ_b	1.3%	1.0%	1.2%	0.9%		
κ_c	2.2%	1.9%	2.1%	1.9%		
κ_g	1.5%	1.2%	1.5%	1.1%		
κ_W	1.4%	1.1%	1.3%	1.0%		
κ_{τ}	1.5%	1.2%	1.3%	1.1%		
κ_Z	0.25%	0.25%	0.13%	0.12%		
κ_{γ}	3.7%	1.6%	3.7%	1.6%		
κ_{μ}	8.7%	5.0%	_	_		
BR_{inv}^{BSM}	< 0.30%	< 0.30%	_	_		
Γ_H	2.8%	2.3%	_	_		

Higher Energy Run

- 350~365GeV Run: worthwhile
 - Over top threshold, EW/EFT/Theoretical part benefits;
 - Larger vvH cross section; Benefit width measurement
 - All constrained by width(2.8%), in current CEPC 240GeV run, Higgs coupling suffered;
 - Fcc-ee/ILC/CLIC all have similar plan
- Temporary benchmark: 2 iab @ 360GeV
 - 360 saves 10% energy with respect to 365 GeV

The Plan for Fcc-ee (CERN-ACC-2018-0057) : 0.2iab 350GeV + 1.5iab 365GeV

Signal Cross Sections

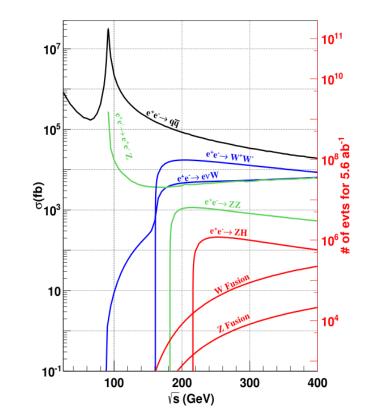


• 240GeV:

2019/7/24

- ZH: 196.9; vvH: 6.2; about 318:10; (Z->vv : vvH = 6.4:1)
- Interference are ignored.
- 350GeV: (vvH ~ 100% Z->vv), (eeH ~ 60% Z->ee)
- 360GeV: (vvH ~ 117% Z->vv), (eeH ~ 67% Z->ee)
- 365GeV: (vvH ~ 126% Z->vv), (eeH ~ 71% Z->ee)

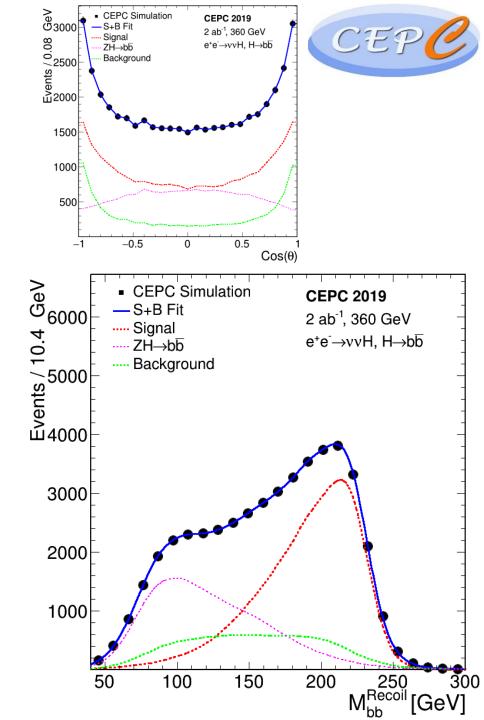
fb	240	350	360	365	360/240
ZH	196.9	133.3	126.6	123.0	-36%
WW fusion	6.2	26.7	29.61	31.1	+377%
ZZ fusion	0.5	2.55	2.80	2.91	+460%
Tot	203.6		159.0		
Tot Events	1.14M		0.32M		



ZZ fusion (2%) also cannot be ignored.

Major background cross sections

pb	240	350	360	365	360/240	
ee(γ)	930	336	325	319	-65%	
μμ(γ)	5.3	2.2	2.1	2.1	-60%	
$qq(\gamma)$	54.1	24.7	23.2	22.8	-57%	
WW	16.7	10.4	10.0	9.81	-40%	
ZZ	1.1	0.66	0.63	0.62	-42%	
tt	١	0.155	0.317	0.369		
sZ	4.54	5.72	5.78	5.83	+27%	
sW	5.09	5.89	6.00	6.04	+18%	


In 240GeV, most channels are 4f bkg dominant, usually ZZ.

 $ee \rightarrow t\bar{t} \rightarrow WW^*b\bar{b}$ would be 6 jets/ llvv+2 jets. Would challenging for jet clustering.

MC Simulation for $t\bar{t}$ still tuning;

vvH->bb, Full simulation

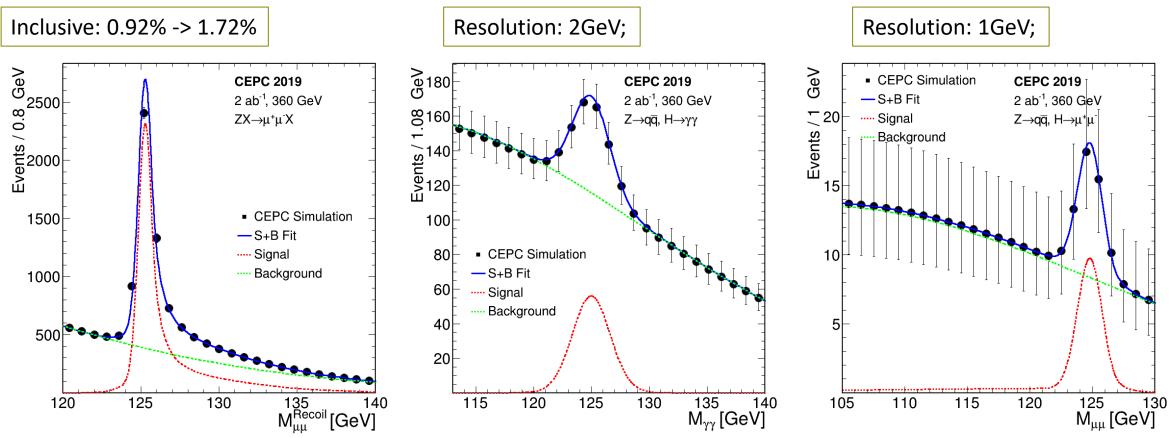
- See Hao's slides for further information
 - vvH Eff 60+%;
 - Bkg: 4f bkg full simulation, qq scaled from 240 case
 - tt MC not ready; Consider qq +20%;
 - 2d Recoil qq + Cos θ_{qq} Fit
 - Considering ZH constrain:
 - $\sigma(vvH) * Br(H \rightarrow bb):0.79\%$
 - 240GeV: 3%; big improvement;
 - ZH->bb (0.63%) share the anti-correlation -45%.

Results

	5.6ab ⁻¹ ,	2ab⁻¹,	1.5ab ⁻¹ ,
	240	360	360
$\sigma(ZH)$	0.50%	1%	
$\sigma(ZH) * Br(H \rightarrow bb)$	0.27%	0.63%	0.71%
$\sigma(ZH) * Br(H \rightarrow cc)$	3.3%	6.2%	7.2%
$\sigma(ZH) * Br(H \rightarrow gg)$	1.3%	2.4%	2.7%
$\sigma(ZH) * Br(H \rightarrow WW)$	1.0%	2.0%	2.3%
$\sigma(ZH) * Br(H \rightarrow ZZ)$	5.1%	12%	14%
$\sigma(ZH) * Br(H \rightarrow \tau \tau)$	0.8%	1.5%	1.7%
$\sigma(ZH) * Br(H \rightarrow \gamma \gamma)$	5.4%	8%	9.2%
$\sigma(ZH) * Br(H \rightarrow \mu\mu)$	12%	29%	33%
$\sigma(vvH) * Br(H \rightarrow bb)$	3%	0.79%	0.91%
$Br_{upper}(H \rightarrow inv.)$	0.2%	١	١
$\sigma(ZH) * Br(H \rightarrow Z\gamma)$	16%	25%	29%
Width	2.8%	~0.8%	

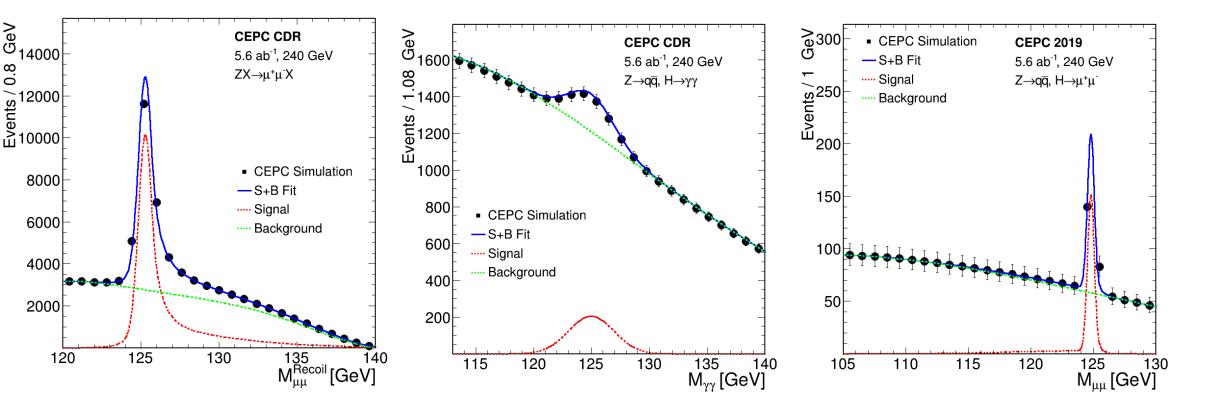
*: $\sigma(ZH)$ estimated as 1%. qqH $\sigma(ZH)$ still unreproducible

Fcc: \sqrt{s} (GeV) 240365Luminosity (ab^{-1}) 5 1.5 $\delta(\sigma BR)/\sigma BR$ (%) ΗZ $\nu \overline{\nu} H$ ΗZ $\sqrt{\nu}$ H $H \rightarrow any$ ± 0.5 ± 0.9 $H \rightarrow b\bar{b}$ ± 0.3 ± 0.5 ± 3.1 ± 0.9 $H \rightarrow c\bar{c}$ ± 2.2 ± 6.5 ± 10 $H \rightarrow gg$ ± 1.9 ± 3.5 ± 4.5 $H \rightarrow W^+ W^ \pm 1.2$ ± 2.6 ± 3.0 $\mathrm{H} \rightarrow \mathrm{ZZ}$ ± 4.4 ± 12 ± 10 $H \rightarrow \tau \tau$ ± 0.9 ± 1.8 ± 8 $H \to \gamma \gamma$ ± 9.0 ± 18 ± 22 $H \rightarrow \mu^+ \mu^ \pm 19$ ± 40 $H \rightarrow invisible$ < 0.3< 0.6


Generally, since the extrapolation is not so accurate, results are comparable.

For $H \rightarrow \gamma \gamma$ and $H \rightarrow \mu \mu$, resolution changes considered. Keep diphoton resolution ~(2.5GeV) : 9% 2.5GeV to 2GeV(Better): 8%

Keep dimuon resolution ~(0.3GeV): 23% 0.3GeV to 1GeV(Worse): 29%


360 GeV Plots

240 GeV Plots

Discussion

- Current extrapolation
 - Mainly scale yields
 - bkg could be even lower if correct analysis strategies are applied.
 - Proved by Hao's work: 360GeV selection has much better effiencicy.
 - Not reliable in channels like vvH, eeH, inclusive.....
 - need further study
- To dos

Also mentioned in Jianming's summary

- $\sigma(ZH)$ estimation
- Other vvH besides bb; eeH;
- Combined measurement;

Fit techniques discussion

Discussion raised by Jianming, so I did several validations.

Recoil Mass calculation

Severval methods available, which is equivalent to a simple kinematic fit.

CEPC 2019

• $(m_{recoil}^{E})^{2} = s - 2\sqrt{s}E_{h}^{rec} + m_{h}^{2}$ • $(m_{recoil}^{p})^{2} = s - 2\sqrt{s} \sqrt{m_{h}^{2} + |p_{h}^{rec}|^{2} + m_{h}^{2}}$ • $(m_{recoil}^{shift})^2 = s - 2\sqrt{s} \cdot \Gamma \cdot E_h^{rec} + m_h^2$ $= s - 2\sqrt{s} \sqrt{m_h^2 + \left|\Gamma \cdot p_h^{rec}\right|^2 + m_h^2}$, where $\Gamma = \frac{m_h}{m_h^{rec}}$;

CEPC Simulation

- S+B Fit

Signal

ZH→bb

Background

100

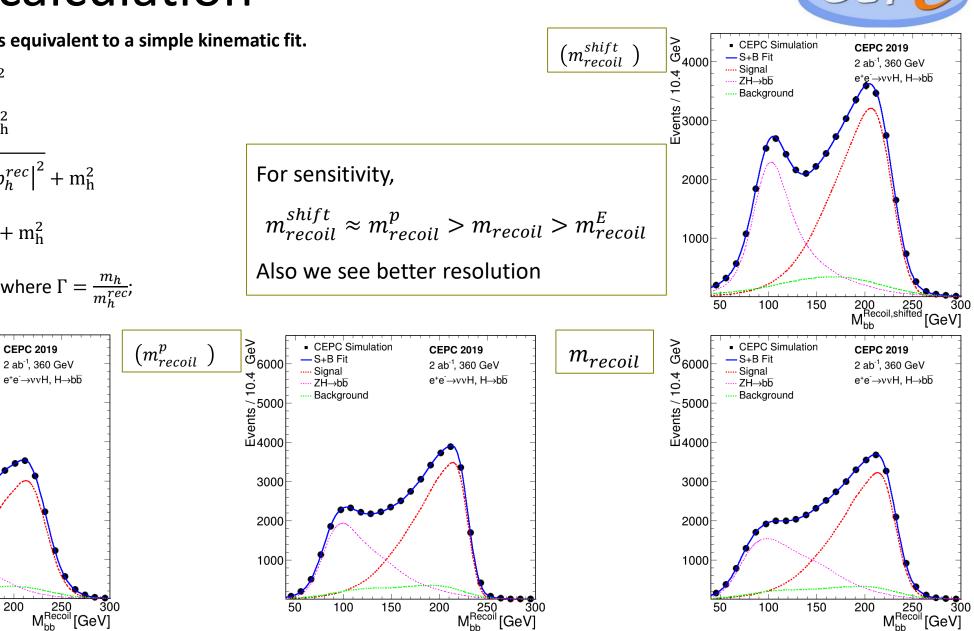
150

200

• $m_{recoil}^2 = s - 2\sqrt{s}E_{\rm h}^{\rm rec} + (m_{\rm h}^{\rm rec})^2$

> 9 6000⊢

Events / 10.4 4000


3000

2000

1000

50

4

 (m^{E}_{recoil})

Fit Shape

> ⊎ 4000⊢

Events / 1.6

2000

1000

 M_{vis}

• For the same yields, shape matters.

CEPC Simulation

- S+B Fit

Signal

ZH→bb

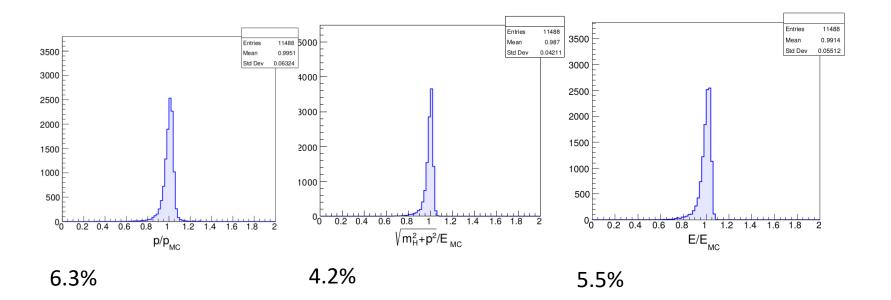
Background

105 110 115 120 125 130

- vvH->bb case, M_{vis} has no separation power
 - results would close to simple number counting. ٠
- While m_{recoil}^{p} is only determined by $p_{vis}(p_{vis}^{2})$;

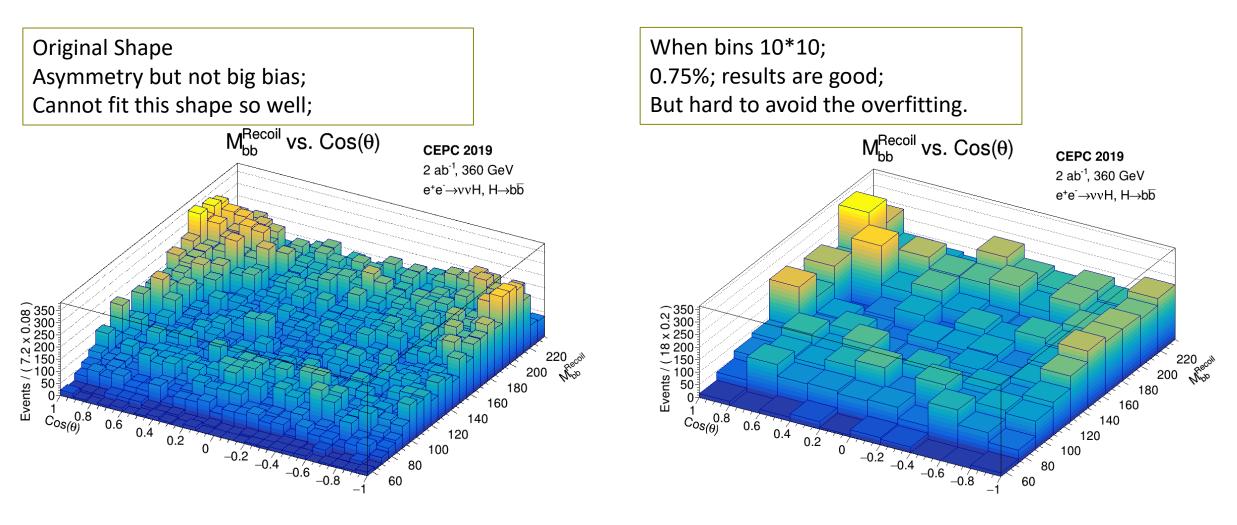
CEPC 2019

2 ab⁻¹, 360 GeV


e⁺e⁻→vvH, H→bb

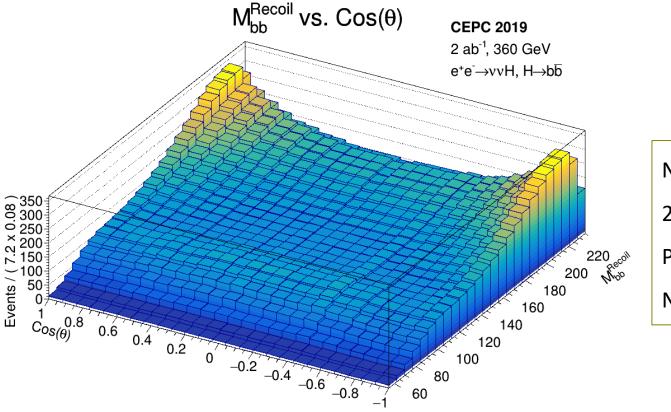
Truth information From Hao

• Reco/Truth resolution, $\sqrt{m_H^2 + p^2}$ is best: Smaller distortion



Different recoil mass method corresponding to different correction. I recommend apply m_{recoil}^{p} or m_{recoil}^{shift} to all channels.

$$(m_{recoil}^{p})^{2} = s - 2\sqrt{s}\sqrt{m_{h}^{2} + |p_{h}^{rec}|^{2}} + m_{h}^{2}$$
$$(m_{recoil}^{shift})^{2} = s - 2\sqrt{s}\sqrt{m_{h}^{2} + \left|\frac{m_{h}}{m_{h}^{rec}} \cdot p_{h}^{rec}\right|^{2}} + m_{h}^{2}$$


2d Recoil qq + Cos θ_{qq} Fit

- Hard to find 2d pdf to describe and fit
 - RooNDKeysPdf usually crash; RooHistPdf need small bin

2d Recoil qq + Cos θ_{qq} Fit

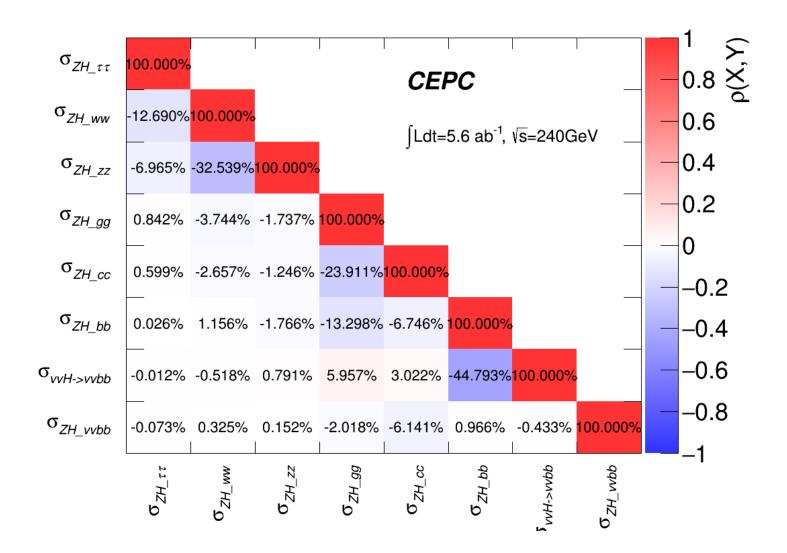
- 1d*1d smooth pdf: Easy to describe, clear physics meaning.
- Surely 2d pdf contains more information
 - Overfitting? ->is that we want?

Need to determine to use which method:

2d RooHistPdf or 1d*1d Smooth shape;

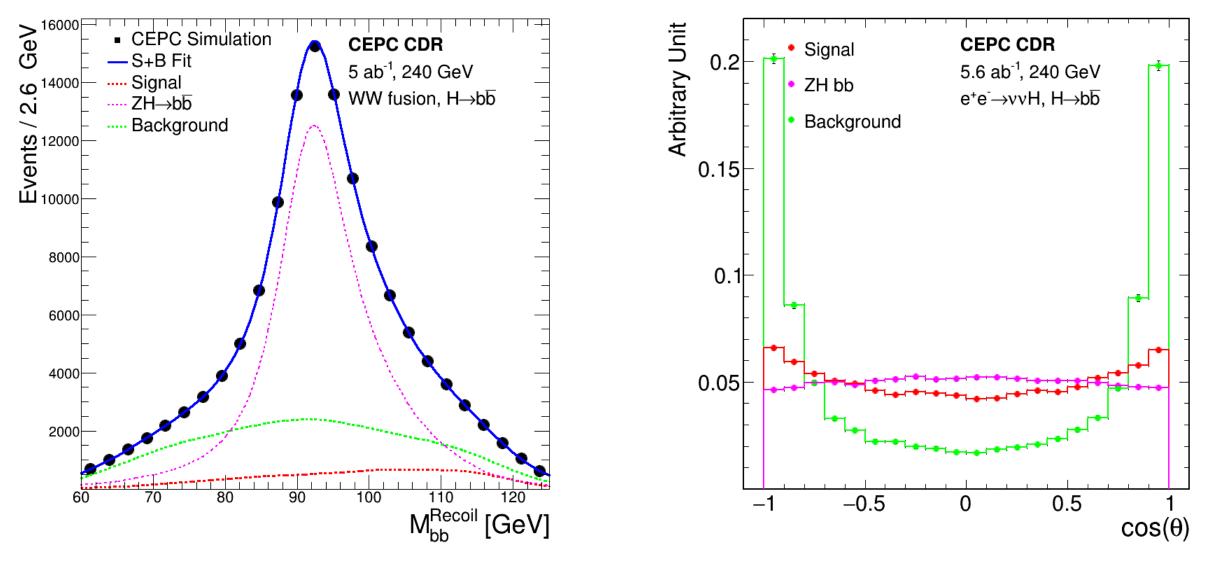
Personally I prefer 1d*1d. Easy to understand.

Need to see the 2d distribution first to avoid huge bias case.

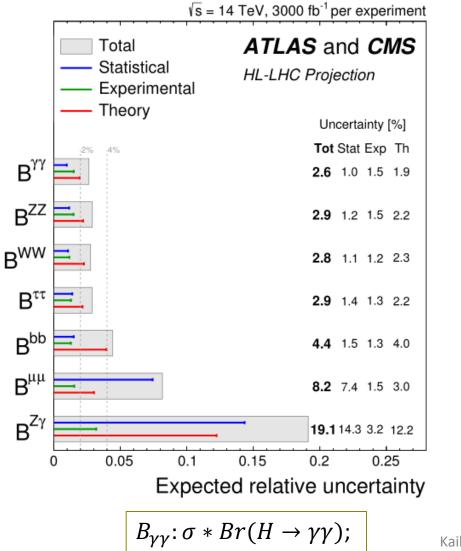


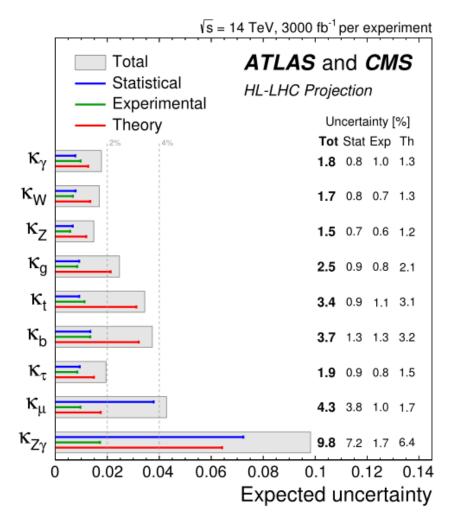
backup

2019/7/24


Correlation matrix

vvH->bb 240GeV





Synergy of HL-LHC

• HL-LHC S2 estimation; has wonderful prediction on such channels like $\gamma\gamma$.

Kappa Synergy

Collider	HL-LHC	ILC ₂₅₀	CLIC ₃₈₀	LEP3240	$CEPC_{250}$	FCC-ee ₂₄₀₊₃₆₅		0+365
Lumi (ab^{-1})	3	2	1	3	5	5_{240}	$+1.5_{365}$	+ HL-LHC
Years	25	15	8	6	7	3	+4	
$\delta\Gamma_{\rm H}/\Gamma_{\rm H}$ (%)	SM	3.6	4.7	3.6	2.8	2.7	1.3	1.1
$\delta g_{ m HZZ}/g_{ m HZZ}$ (%)	1.5	0.3	0.60	0.32	0.25	0.2	0.17	0.16
$\delta g_{ m HWW}/g_{ m HWW}$ (%)	1.7	1.7	1.0	1.7	1.4	1.3	0.43	0.40
$\delta g_{ m Hbb}/g_{ m Hbb}$ (%)	3.7	1.7	2.1	1.8	1.3	1.3	0.61	0.56
$\delta g_{ m Hcc}/g_{ m Hcc}$ (%)	SM	2.3	4.4	2.3	2.2	1.7	1.21	1.18
$\delta g_{ m Hgg}/g_{ m Hgg}$ (%)	2.5	2.2	2.6	2.1	1.5	1.6	1.01	0.90
$\delta g_{\mathrm{HTT}}/g_{\mathrm{HTT}}$ (%)	1.9	1.9	3.1	1.9	1.5	1.4	0.74	0.67
$\delta g_{ m H}$ μμ/ $g_{ m H}$ μμ (%)	4.3	14.1	n.a.	12	8.7	10.1	9.0	3.8
$\delta g_{\rm H}\gamma\gamma/g_{\rm H}\gamma\gamma$ (%)	1.8	6.4	n.a.	6.1	3.7	4.8	3.9	1.3
$\delta g_{ m Htt}/g_{ m Htt}$ (%)	3.4	-	-	-	-	-	-	3.1
BR _{EXO} (%)	SM	< 1.7	< 2.1	< 1.6	< 1.2	< 1.2	< 1.0	< 1.0