100MeV Proton Irradiation

Yuhang, Tao Yang , Shi Xin, Kewei

tanyuhang@ihep.ac.cn

2019.7.25

Introduction:

Review

➤Status quo

- LGAD sensor has good time resolution without irradiation
- Irradiation can degrade the performance of the sensor
- Irradiation particle:
 - π , proton, neutron, e
- > Motivation:
 - Research the effect of different irradiation fluences

Contrast proton irradiation and neutron irradiation 2019/7/24

Three Problems:

Review

≻Uniform:

- Beam uniformity: about 1%
- Position uniformity is accordance with Gaussian distribution, but it is difficult to determine the specific fluences
- ➢Irradiation attenuation (through 5 layers)
 - The proton energy and quantity of each layer may be different
 - We are doing simulation calculations

► Low Temperature:

- Now: Compressed air blowing can't lower the temperature to below 0°C
- Plan: Replace compressed air with liquid nitrogen
 2019/7/24

Irradiation Fluence:

Fluence (Neq)	Conversion factor (100 MeV)	Proton	Beam Current (nA)	Beam intensity (1E11 p/cm^2 s)	Time (s)	Time(m)	Time(h)	Core Sensor (NDL)	Core (HPK)	Core (CNM)	NDL	НРК
7.00E+14	1.276	5.49E+14	100	1.00E+11	5.49E+03	91.43	1.52E+0 0	BV170(5)	W8-SE5	W3_G09	9#(3), BV60(2)	W17(SE 3)
1.00E+15	1.276	7.84E+14	100	1.00E+11	7.84E+03	130.62	2.18E+0 0	10#(2), BV170(5)	W8(SE3,SE5) W18(SE3, SE5)	W3_B17	9#(3), BV60(2)	W17(SE 5)
2.00E+15	1.276	1.57E+15	100	1.00E+11	1.57E+04	261.23	4.35E+0 0	BV170(5)	W18(SE5), W8(SE5)	W3_E06	9#(3), BV60(2)	W17(SE 5)
3.00E+15	1.276	2.35E+15	100	1.00E+11	2.35E+04	391.85	6.53E+0 0	10#(2), BV170(5)	W8(SE3,SE5) W18(SE3, SE5)	W3_J02	9#(2), BV60(2)	W17(SE 5)
4.50E+15	1.276	3.53E+15	100	1.00E+11	3.53E+04	587.77	9.80E+0 0	10#(2), BV170(5)	W8 SE2, W18 SE2		9#(3), BV60(2)	W17(SE 5)

Fluence(Neq)->proton fluence: 100 MeV proton dose = $\frac{1 \text{ MeV neuron accord}}{100 \text{ MeV proton radiation hardness}}$

2

Fluence calculation:

100MeV radiation hardness factor 1.276, 100nA 100MeV proton, Beam area 2.5cm*2.5cm

$$beam \ current = 100 \ nA = 10^{-7} \ C/s = \frac{10^{-7} \ C/s}{1.602 \times 10^{-19} \ C/proton} = 6.242 \times 10^{11} \ proton/s$$

$$fluence = \frac{beam \ current}{area} = \frac{6.242 \times 10^{11} \ proton/s}{2.5 \times 2.5 \ cm^{-2}} = 0.9987 \times 10^{11} \ proton \cdot cm^{-2} \cdot s^{-1}$$

$$\approx 10^{11} \ proton \cdot cm^{-2} \cdot s^{-1}$$

$$\begin{aligned} total \ beam \ time &= \frac{maximum \ proton \ dose}{fluence} = \frac{3.53 \times 10^{15} \ proton/cm^{-2}}{10^{11} proton \cdot cm^{-2} \cdot s^{-1}} = 35266.5s \\ &= 587.87 min = 9 \ hour \ 48 \ minute \end{aligned}$$

•Next, we may use the irradiated aluminum sheet for irradiation fluence calibration 2019/7/24 --detail in backup

Fixed sensor process (7E14): W8-SE5

BV170: 5

5cm

1pad NDL 9#right:3 . BV60 up: 2

CNM RUN 11486 W3-GO9

2019/7/24

The details of selecting sensor:

NDL sensors															
Fluence NDL	7E14	1E15	2E15	3E15	4.5E15										
10#	0	2	0	2	2										
9#	3	3	3	2	3										
5#	0	0	0	0	0										
BV170	5	5	5	5	5										
BV60	2	2	2	2	2										
Total	10	12	10	11	12		HPK sensors								
						Eluence HPK	7E14	1E15	2E15	3E15	4.5E15				
						W8	SE5	SE3,SE5	SE5	SE3,SE5	SE2				
						W17	SE3	SE5	SE5	SE5	SE5				
201	19/7/24					W18		SE3,SE5	SE5	SE3,SE5	SE2 6				

Temperature test: the surface is frost, and the temperature up to 2C throughout the test

The details of proton irradiation:

- Temperature: most of time below 0C, maximum 2C->prevent annealing
- Beam current: 100nA error:1%-2%
- Experimental time: about 21 hours
- After irradiation, there is still a high radioactivity on the sample
- After 6 days, the radioactivity of total only 0.5μ sv/h
- We have taken sensors back , and start adjusting the temperature system.
 We may measure some sensors this week, if the temperature can reach -30C.

Next Plan

Cryogenic system update –reach -30C
 Now, we only borrow a big liquid nitrogen tank to measure firstly.

- Measure 1e15 HPK sensor for calibration
- Measure NDL sensor: I-V,C-V, collection charge, time resolution and so on