HGTD DAQ AND **ELECTRONICS**

JuanAn García Institute of High Energy Physics HGTD IHEP Workshop 25th July 2019

Institute of High Energy Physics Chinese Academy of Sciences

OUTLOOK

- HGTD requirementsHGTD readout system
 - On detector electronics
 - Off detector electronics
- ► DAQ and Luminosity
- ➤ HGTD demonstrator
- ≻TO-DO list

HGTD REQUIREMENTS

LHC / HL-LHC Plan

L = $7.5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ Pile-up of $\mu \approx 200$

High Granularity Timing Detector will provide time resolution at a high pile-up

HGTD REQUIREMENTS

Detector layout and radiation hardness:

HGTD READOUT SYSTEM

ON DETECTOR ELECTRONICS

Front-end ASIC (ALTIROC) readout architecture:

- ➤ 130 nm CMOS technology
- Analog and digital architecture
- End of column (EOC) logic
- > 225 channels (pixels)/ASIC
- I²C link for slow control
- PLL and phase shifter
- DAQ stream 320, 640 and 1280 Mbps
- Luminosity stream 640
 Mbps

ON DETECTOR ELECTRONICS

ALTIROC requirements:

- Radiation hardness ~5 MGy
- Clock jitter <25 ps
- Time over threshold (ToT) and Time of Arrival (ToA) information
- ► Latency up to 35 µs @ 40 MHz
- Low power dissipation

Hit data format:

- ➢ 8b10b encoding
- Header: (BCID,L0, parity bit,...)
- \succ Hit word:
 - Row, col
 - ToT (9 bits)
 - ToA (7bits)

See Jie Zhang talk about the data format

ON DETECTOR ELECTRONICS

Peripheral electronic board:

- 10 V to 1.2 V DC-DC converter
- High voltages
- Versatile link Plus: 2.56 and 10.24 Gbps (up/down-link)
- Low power GigaBit Transciver (lpGBT)
 - Radiation hard
 - Low power dissipation
 - Clock jitter <2 ps
 - I²C bus
 - E-link data stream 320, 640 and 1280 Mbps
 - E-link data up 80, 160 and 320 Mbps

Need to identify a person for the PCB design and construction!!

OFF DETECTOR ELECTRONICS

ATLAS phase II readout architecture:

OFF DETECTOR ELECTRONICS

The FELIX (Front End LInk Exchange) board:

- Detector independent (common to all ATLAS detectors).
- Support standard GBT protocol.
- Distribute TTC (Timing, Trigger and Control) signals via fixed latency.
- Support control, calibration and monitoring of sub-detectors.

FELIX will interface with most of the ATLAS systems:

- \succ Data handler \rightarrow Event builder
- Detector Control System (DCS): LV current, temperature,...
- On-line monitoring
- Control and configuration of the FE ASIC

High uncertainty in the occupancy:

- Average vs maximum
- ITK Pixel layout/services
- Trigger effect: We typically trigger in fill (high occ) bunches
 Underestimated?

Readout layout:

- ➤ r < 200 mm</p>
- \rightarrow readout speed = 1280 Mbps
- ➤ 200 < r < 320 mm:</p>
- \rightarrow readout speed = 640 Mbps
- ➤ r > 320 mm:
- \rightarrow readout speed = 320 Mbps

Expected link usage at different link speeds:

Upper limit on the number of hits/ASIC driven by the bandwidth \rightarrow This is linked with the ALTIROC data format

HGTD as luminometer:

- Bunch by bunch information at 40 MHz
- Sum of the hits between two different time Windows (S1 and S2)
- Dedicated luminosity stream at 640 Mbps.
- Only a sub-sample of modules will be used for luminosity measurements 200 < r < 320 mm</p>
- Off detector readout: Dedicated FELIX lumi boards.

T0 calibration:

- Particularly challenging:
 - Bunch by bunch inhomogeneities in t0
 - Different sources of clock jitter: LHC, FELIX, lpGBT, ALTIROC,...
 - Dynamic contributions: Noise from the flex, day/night temperature changes,...
- A t0 calibration procedure is under study

See Ludovica's talk on the t0 calibration

HGTD DEMONSTRATOR

An space has been identified for HGTD demonstrator at CERN

HGTD DEMONSTRATOR

Proof of concept:

- ➤ Cooling demonstrator with heaters → Validate termal model and loading procedure
- Mechanical structure and services
- HGTD modules
- DAQ/Luminosity demonstrator (FELIX+GBT)
- Peripheral electronics

HGTD DEMONSTRATOR

DAQ demonstrator roadmap:

- 2019: Validation of FELIX readout with FPGA emulator
- 2020: Validation of lpGBT + ALTIROC emulator
- 2021: First test with ALTIROC modules

Further test:

- Measurement of clock jitter: FELIX+lpGBT+FLEX+ALTIROC
- Validate services (LV,HV,...)
- Develop a calibration procedure: FELIX + YARR (Yet Another Rapid Readout): Generic PCI SW and FW meant for calibrations.

FELIX board just arrive for first test

TO-DO LIST

- Front-end ATLIROC
 - Data format (Jie Zhang)
 - Command decoder
- Peripheral electronics:
 - PCB design and construction
 - Integration of lpGBT and Versatile link
- ➢ T0 calibration (Ludovica)
 - Study of bunch by bunch t0 drift
 - Measurement of the jitter performance after the FLEX
- DAQ demonstrator (myself):
 - FPGA lpGBT/GBT emulator
 - ALTIROC emulator
 - Interface with FELIX
 - Proof of concept of peripheral boards
 - Calibration procedure

BACKUP

Useful links:

- TDAQ requirements phase II: <u>https://edms.cern.ch/ui/file/1563801/1/RequirementsPhaseII_v1.1.0.pdf</u>
- IpGBT: <u>https://espace.cern.ch/GBT-Project/LpGBT/default.aspx</u>
- FELIX: <u>https://atlas-project-felix.web.cern.ch/atlas-project-felix/</u>
- HGTD: <u>https://cds.cern.ch/record/2623663/files/LHCC-P-012.pdf</u>
- YARR: <u>https://yarr.readthedocs.io/en/latest/</u>