

Jie Zhang, Raimon Casanova Mohr

zhj@ihep.ac.cn

REQUIREMENT

- Upon receiving the trigger signal, the control unit requests the EOCs to retrieve and store the data from the pixels.
- Pack the data in frames, serialize and transmit them to the peripheral on-detector electronics through e-links.
- Frame protocol
 - 8b10b encoding mode
 - Raw data mode
 - Configurable through I2C, <u>Details</u>
- Transmission speed
 - 320 Mb/s, 640 Mb/s or 1.28 Gb/s
 - Configurable through I2C

IMPLEMENTATION

- To full fill the bandwidth at 1.28Gbps, we replace the 40MHz clock to 80MHz to fetch more data from EOCs
 - 24b*40 =960b
- Calculate the CRC8 with 24-bit in parallel
- The FSM need to handle two bytes in parallel
 - 16b*80 =1280b
- Calculate the 8b10b with 16-bit in parallel
- Only 640MHz clock is used for serializing with double data rate (DDR)

TESTING PROCESS

- 1. Get the hits file from simulation.
- 2. Send it to the emulator via Ethernet.
- 3. Generate pseudo random numbers as TOT and TOA.

Generate the triggers to start the data acquirement.

- 4. Readout the events from FPGA
- 5. Compare the events with the one from simulation

DE FORMATTING IN FPGA

- The main clock is 160Mhz
 - Easy to handle the data in byte mode, for 8b10b and CRC8

PROGRESS

- The green blocks are ready, the blue blocks are under development
- The HDL codes are uploaded to Gitlab, <u>https://gitlab.cern.ch/jiezh/altiroc2_emulator</u>
- The scripts for DAQ/slow control at PC are written by Python
- The register map and descriptions are uploaded to Wiki <u>https://gitlab.cern.ch/jiezh/altiroc2_emulator/wikis/home</u>.

DEMONSTRATOR

- The FPGA board with Kintex/Virtex Ultrascale or Kintex/Virtex Ultrascale plus
 - The IO block should support 1.28 Gbps
- Example:

KCU116

- Develop the RAM (random access memory) emulation model based on FPGA BlockRAM
- Replace the tristate logic (high-Z) to the multiplexer at the EOC (end of column)