### Study of CP violation in charm at LHCb



#### Yuehong Xie (华中师范大学)



#### 2019年理论与实验联合研讨会: 粲物理 暨南大学, 2019年11月22-24日

# **Outline**

- CP violation and LHCb
- Charm mixing and indirect CPV violation
- Direct CP violation and first observation
- Future prospects
- Summary

# **CP** Violation

#### Breaking of combined symmetry of Charge-conjugation and Parity

- > matter/antimatter behaves differently
- > A necessary condition to explain BAU



### **Origin of CPV in SM:** $\eta \neq 0$



# **Three types of CPV**



P in interference between mixing and decay ("Mixing induced P")



### What is special about charm

• Unique way to probe NP in up-type FCNC



- $D^0$  mixing small due to GIM
- CPV highly suppressed in SM but no precise estimations
  - > Indirect CPV  $\leq 0 \ (10^{-4})$
  - > Direct CPV  $\leq 0(10^{-3})$
- Good understanding of longdistance effects essential



# **LHC: charm factory**



Large production cross sections  $\sigma(c\bar{c}X) \sim 4\% \times \sigma_{pp}^{inesl}$ 20 times bigger than  $\sigma(b\bar{b}X)$ ) Many species of c-hadrons Open charm:  $D^0, D^{\pm}, D_s^{\pm}, \Lambda_c^{\pm}$ Hidden charm:  $J/\psi, \Xi_{cc}^{++}, P_c, \dots$ 



#### LHCb detector

#### Single arm forward spectrometer covering rapidity range

 $2 < \eta < 5$ 

#### **Excellent performance in**

tracking, vertexing and particle identification



### **Data samples**





More than 9 fb<sup>-1</sup> accumulated in Run1+Run 2 ~ $10^{13} c\bar{c}$  have been produced 59 publications on charm: mixing, CPV, lifetimes, spectroscopy, masses, rare decays, ...

# $D^0 - \overline{D}^0$ mixing and indirect CPV

# **Mixing and CP parameters**



• Mixing very small (<1%)  
• 
$$x \equiv \frac{M_1 - M_2}{\Gamma}, y \equiv \frac{\Gamma_1 - \Gamma_2}{2\Gamma}$$

• CP violation highly suppressed  $\geqslant \left| \frac{q}{p} \right| \neq 1$ : CPV in mixing  $\geqslant \varphi_{f} \equiv \arg\left(\frac{q\bar{A}_{f}}{pA_{f}}\right) \neq 0$ : mixing induced CPV  $(\varphi \equiv \arg\left(\frac{q}{p}\right) \approx \varphi_{f}$  if no CPV in decay)





# $D^0$ flavour tagging

- π-tagged prompt sample
  - $\succ \ D^{*\pm} \rightarrow D^0 \pi^{\pm}$
  - >  $D^0$  points to PV



- μ-tagged semileptonic sample
  - $\succ B \rightarrow D^0 \mu^{\pm} X$
  - >  $D^0$  doesn't point to PV
  - Factor of 4 lower yields



# Mixing analysis with $D^0 \to K^{\pm} \pi^{\mp}$

• First observation by LHCb with 2011 data

[PRL 110 (2013) 101802]

Updated using 2011-2016 data

[PRD 97 (2018) 031101]

Ratio of WS to RS decay rates changes with decay time t

$$R(t) \approx R_D + \sqrt{R_D} y' \frac{t}{\tau} + \frac{x'^2 + y'^2}{4} \left(\frac{t}{\tau}\right)^2$$

$$x' = x\cos\delta + y\sin\delta$$
  
 $y' = y\cos\delta - x\sin\delta$ 

$$\frac{A(D^0 \to K^+ \pi^-)}{A(D^0 \to K^- \pi^+)} = -\sqrt{R_D} e^{-i\delta}$$



# **WS/RS** fit results



#### [PRD 97 (2018) 031101]

Run I 3 fb<sup>-1</sup>, Run II 2 fb<sup>-1</sup>

• Assuming CP invariance  $x'^2 = (3.9 \pm 2.7) \times 10^{-5}$  $y' = (5.28 \pm 0.52) \times 10^{-3}$ 

- Direct CP asymmetry ~ 0  $A_D = \frac{R_D^+ - R_D^+}{R_D^+ + R_D^+} = (-0.1 \pm 9.1) \times 10^{-3}$
- Weak constraint on indirect CPV  $0.82 < \left|\frac{q}{p}\right| < 1.45$  @95% CL

# Mixing analysis with $D^0 \rightarrow K_S \pi^+ \pi^-$

[PRL 122 (2019) 231802]

- Use  $D^0 \rightarrow K_S \pi^+ \pi^-$  in run 1
  - > Most precise determination of x from yield ratio between  $\pm b$

bins as a function of decay time

 $x_{CP} = (2.7 \pm 1.6 \pm 0.4) \times 10^{-3}$ 

> No difference observed between initial  $D^0$  and  $\overline{D}^0$ 

 $\Delta x = (-0.53 \pm 0.70 \pm 0.22) \times 10^{-3}$ 



### Impact on W.A.

#### [PRL 122 (2019) 231802]



#### **Consistent with CP symmetry**

# **Golden probe of indirect CPV:** $A_{\Gamma}$

$$A_{CP}(t) \equiv \frac{\Gamma(D^0(t) \to f) - \Gamma(\overline{D}{}^0(t) \to f)}{\Gamma(D^0(t) \to f) + \Gamma(\overline{D}{}^0(t) \to f)} \simeq a_{dir}^f - A_{\Gamma} \frac{t}{\tau_D}$$

 $A_{\Gamma}(f) \approx -x\phi_f + y\left(|q/p| - 1\right) - y\mathcal{A}_{CP}^{\mathrm{dir}}(f)$ 

|                                        | Run 1<br>PRL 118 (2017) 261803 | Run 2 update (5.4 fb <sup>-1</sup> )<br>arXiv: 1911.01114 |
|----------------------------------------|--------------------------------|-----------------------------------------------------------|
| $A_{\Gamma}(K^+K^-)\times 10^{-3}$     | $-0.30 \pm 0.32 \pm 0.10$      | $-0.44 \pm 0.23 \pm 0.06$                                 |
| $A_{\Gamma}(\pi^+\pi^-)\times 10^{-3}$ | $+0.46\pm 0.58\pm 0.12$        | $+0.25\pm 0.43\pm 0.07$                                   |
| Average                                | $-0.29\pm0.28$                 | $-0.29\pm0.21$                                            |



#### **Direct CP violation**

# **CP** transformation



 $A = \rho \ \mathrm{e}^{\mathrm{i}\delta} \ \mathrm{e}^{\mathrm{i}\theta}$ 

 $\overline{A} = \rho \ \mathrm{e}^{\mathrm{i}\delta} \ \mathrm{e}^{-\mathrm{i}\theta}$ 

#### **A CP transformation**

- $\succ$  change sign of the weak phase  $\theta$
- $\succ$  leaves the strong phase  $\delta$  unchanged

### **CP violation in decay**



 $|\overline{A}_{T} + \overline{A}_{P}|^{2} - |A_{T} + A_{P}|^{2} = 4\rho_{T}\rho_{P}sin(\delta_{T} - \delta_{P})sin(\theta_{T} - \theta_{P}) \neq 0$ 

# **No CPV in many LHCb searches**

• SM expectation of A<sup>dir</sup><sub>CP</sub> small, but "how small" is uncertain

$$A_{CP}^{dir} \equiv \frac{|A(D \to f)|^2 - |A(\overline{D} \to \overline{f})|^2}{|A(D \to f)|^2 + |A(\overline{D} \to \overline{f})|^2} \le O(10^{-3})$$

• Two-body decays (precision  $\sim 10^{-3}$ )

[PRL 122 (2019) 191803]

 $\begin{aligned} \mathcal{A}_{CP}(D_s^+ \to K_{\rm S}^0 \pi^+) &= (1.3 \pm 1.9 \ (\text{stat}) \pm 0.5 \ (\text{syst})) \times 10^{-3} \\ \mathcal{A}_{CP}(D^+ \to K_{\rm S}^0 K^+) &= (-0.09 \pm 0.65 \ (\text{stat}) \pm 0.48 \ (\text{syst})) \times 10^{-3} \\ \mathcal{A}_{CP}(D^+ \to \phi \pi^+) &= (0.05 \pm 0.42 \ (\text{stat}) \pm 0.29 \ (\text{syst})) \times 10^{-3} \end{aligned}$ 

$$\begin{split} &A_{CP} \big( D^0 \to K^+ K^- \big) = (0.04 \pm 0.12 \pm 0.10)\% \\ &A_{CP} \big( D^0 \to \pi^+ \pi^- \big) = (0.07 \pm 0.14 \pm 0.11)\% \quad \mbox{[PLB 767 (2017) 177] (run 1)} \end{split}$$

#### • Multibody decays

- $\checkmark \quad A_{CP}(\Lambda_c^+ \to pK^+K^-) A_{CP}(\Lambda_c^+ \to p\pi^+\pi^-)$
- $\checkmark~$  CPV in phase space of  $D^0 \rightarrow \pi^+\pi^-\pi^+\pi^-$
- $\checkmark \quad A_{CP}(D^0 \rightarrow h^+ h^- \mu^+ \mu^-)$

[JHEP 03 (2018) 182] [PLB 769 (2017) 345] [PRL 121 (2018) 091801] <sup>21</sup>

# $\Delta A_{CP}$ strategy for $D^0 \rightarrow h^+h^-$



 $\begin{array}{l} A_{T} \text{ cancels in the asymmetry difference} \\ \Delta A_{CP} \equiv & A_{CP} \left( K^{+}K^{-} \right) \\ & \approx A_{raw} \left( K^{+}K^{-} \right) - A_{CP} \left( \pi^{+}\pi^{-} \right) \\ \end{array}$ 

### **Event selection**

- Use full run 2 sample
- Requirements on
  - Quality, p<sub>T</sub> and PID of tracks
  - > Vertex quality,  $p_T$  and impact parameter of  $D^0$
- Remove soft pion (or muon) kinematic regions where raw asymmetry is large



# Signal samples [PRL 122 (2019) 211803]



A<sub>raw</sub> is obtained for each sample

# **Stability**

- Samples split according to year, magnet polarity and kinematic variables
- No evidence for unexpected dependencies are seen



### **Systematics**

#### Systematic effects well under control

| Source ( <b>10<sup>-4</sup></b> ) | $\pi$ -tagged | $\mu$ -tagged |
|-----------------------------------|---------------|---------------|
| Fit model                         | 0.6           | 2             |
| Mistag                            | —             | 4             |
| Weighting                         | 0.2           | 1             |
| Secondary decays                  | 0.3           | —             |
| Peaking background                | 0.5           | —             |
| B fractions                       | _             | 1             |
| B reco. efficiency                | —             | 2             |
| Total                             | 0.9           | 5             |

### $\Delta A_{CP}$ results

$$\Delta A_{CP}^{\pi-tag} = (-1.82 \pm 0.32 \pm 0.09) \times 10^{-3}$$
$$\Delta A_{CP}^{\mu-tag} = (-0.9 \pm 0.8 \pm 0.5) \times 10^{-3}$$

Compatible with previous LHCb results and WA

LHCb combination (full run1 + run 2)

$$\Delta A_{CP} = (-1.54 \pm 0.29) \times 10^{-3}$$

CP violation in charm observed at  $5.3\sigma$  ! At the upper end of the SM expectations

# History of ΔA<sub>CP</sub> at LHCb



# Interpreting time-integrated $\Delta A_{CP}$

$$\Delta A_{CP} \approx \Delta a_{CP}^{dir} \left( 1 + \frac{\overline{\langle t \rangle}}{\tau(D^0)} y_{CP} \right) + \frac{\Delta \langle t \rangle}{\tau(D^0)} a_{CP}^{ind}$$

- Using LHCb averages
  - >  $a_{CP}^{ind} \approx -A_{\Gamma} = (+0.29 \pm 0.28) \times 10^{-3}$  [PRL 118 (2017) 261803]
  - >  $y_{CP} = (5.7 \pm 1.5) \times 10^{-3}$  [PRL 122 (2019) 011802]
- For the data sample

 $\Delta \langle t \rangle / \tau \left( D^0 \right) = 0.115 \pm 0.002, \, \overline{\langle t \rangle} / \tau \left( D^0 \right) = 1.71 \pm 0.10$ 

$$\Delta a_{CP}^{dir} = (-15.6 \pm 2.9) \times 10^{-4}$$

[PRL 122 (2019) 211803]

#### $\Delta A_{CP}$ dominated by direct CP violation

# **HFLAV** combination



#### World average dominated by LHCb results

#### **Future prospects**

# LHCb upgrades



# **Charm CPV outlook**

# **Direct CPV**: can reach $10^{-4}$ precision with 50 fb<sup>-1</sup> (~2029), posing serious challenges to theorists

| Sample $(\mathcal{L})$                      | Tag    | Yield                     | Yield                         | $\sigma(\Delta A_{CP})$ | $\sigma(A_{CP}(hh))$ |
|---------------------------------------------|--------|---------------------------|-------------------------------|-------------------------|----------------------|
|                                             |        | $D^0 \rightarrow K^- K^+$ | $D^0 \rightarrow \pi^- \pi^+$ | [%]                     | [%]                  |
| Run 1–2 (9 fb $^{-1}$ )                     | Prompt | 52M                       | 17M                           | 0.03                    | 0.07                 |
| Run 1–3 (23 fb $^{-1}$ )                    | Prompt | 280M                      | 94M                           | 0.013                   | 0.03                 |
| Run 1–4 (50 fb <sup><math>-1</math></sup> ) | Prompt | $1\mathrm{G}$             | $305 \mathrm{M}$              | 0.01                    | 0.03                 |
| Run 1 5 (300 fb <sup>-1</sup> )             | Prompt | 4.9G                      | 1.6G                          | 0.003                   | 0.007                |

# Indirect CPV: theoretically much more clean, chance for observation with $10^{-5}$ precision after ~2035

| $\pm 80.0 \times 10^{-5}$                                      | $\pm 96.0 \times 10^{-6}$                                             | $\pm 14.0 \times 10^{-5}$                                  | $\pm 13.0 \times 10^{-5}$                             | LHCt             |
|----------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------|------------------|
| $\pm 46.0 \times 10^{-5}$<br>$\pm 32.0 \times 10^{-5}$         | $\pm 40.0 \times 10^{-6}$                                             | $\pm 12.0 \times 10^{-5}$<br>$\pm 6.2 \times 10^{-5}$      | $\pm 35.0 \times 10^{-5}$<br>$\pm 4.3 \times 10^{-5}$ | Belle II<br>LHCb |
| $\pm 8.0 \times 10^{-5}$ $0^{0} \rightarrow K^{\pm} \pi^{\mp}$ | $\pm 8.0 \times 10^{-6}$ $D^0 \to K^{\mp} \pi^{\pm} \pi^{+} \pi^{-1}$ | $\pm 1.4 \times 10^{-5}$ $D^0 \rightarrow K_s \pi^+ \pi^-$ | ±1.0×10 <sup>-5</sup>                                 | HL-LHC           |

# **Summary**

- LHCb as a charm factory has produced a series of exciting results
- Charm mixing: very well established
- Direct CP violation
  - > Observed for the first time

 $\Delta A_{CP} = (-1.54 \pm 0.29) \times 10^{-3}$ 

- > Theoretical interpretation challenging
- Indirect CP violation
  - > Theoretically cleaner than direct CPV
  - > Current precision of a few  $\times 10^{-4}$  is insufficient for observation
- Observation of indirect CP will be the next milestone in charm physics and requires LHCb upgrade II

### **Backup slides**

# **Charm mixing**

• Mass eigenstates are combinations of  $D^0$  and  $\overline{D}^0$ 

$$egin{array}{rcl} |D_1
angle &=& p|D^0
angle + q|\overline{D}^0
angle \ |D_2
angle &=& p|D^0
angle - q|\overline{D}^0
angle \end{array}$$

$$egin{aligned} x &\equiv rac{\Delta M}{\Gamma}, \ \Delta M &\equiv M_1 - M_2 \ y &\equiv rac{\Delta \Gamma}{2\Gamma}, \ \Delta \Gamma &\equiv \Gamma_1 - \Gamma_2 \end{aligned}$$

$$egin{aligned} &|\langle \overline{D}^0 | D^0(t) 
angle|^2 \ = rac{1}{2} \left| rac{p}{q} 
ight|^2 e^{-\Gamma t} \left[ \cosh(y \Gamma t) - \cos(x \Gamma t) 
ight] \ &|\langle D^0 | \overline{D}^0(t) 
angle|^2 = rac{1}{2} \left| rac{q}{p} 
ight|^2 e^{-\Gamma t} \left[ \cosh(y \Gamma t) - \cos(x \Gamma t) 
ight] \end{aligned}$$

### $\Delta A_{CP}$ status before 2019

