Hadronic Decays of $D^{0(+)}$ and D_s^+ at \Re

Liaoyuan Dong 董燎原 Institute of High Energy Physics, Beijing (On behalf of the ݤSⅢ collaboration)

2019年理论与实验联合专题研讨会: 粲物理 暨南大学 22-24 November 2019

Outline

Introduction

- ➤ The Hest experiment
- Production near threshold and tag technique
- Hadronic decays of $D_{(s)}$
 - > Observation of pure W-annihilation decays: $D_s^+ \rightarrow p\bar{n}, D_s^+ \rightarrow \omega \pi^+, D_s^+ \rightarrow a_0(980)\pi$

> Amplitude analysis of $D \to K\pi\pi\pi\pi$: $D^0 \to K^-\pi^+\pi^+\pi^-, D^0 \to K^-\pi^+\pi^0\pi^0, D^+ \to K_s^0\pi^+\pi^+\pi^-$

➢ Measurement of the branching fractions(BFs) of $D \to PP, D_s^+ \to K_{S,L}^0 K^+, D^+ \to K_{S,L}^0 K^+(\pi^0)$ (P = pseudo-scalar)

The **ES** Experiment

Beijing-Electron-Positron Collider II (BEPCII)

- $-e^+e^-$ collisions with $\sqrt{s} = 2.0 - 4.6 GeV$
- Direct production of charmonia
- Designed Luminosity

 $\mathcal{L} = 1 \times 10^{33} cm^{-2} s^{-1}$ was achieved in April 2016.

BES detector

- 93% coverage of the full solid angle
- Main drift chamber $\sigma_p/p = 0.5\%@1 \text{GeV}$
- Time-of-flight system $\sigma_{\rm T} = 100 \text{ps in Barrel}$
- Elmg. Calorimeter $\Delta E/E = 2.5\%$ @1GeV
- Superconducting 1T magnet
- Muon system (RPC)

Production near threshold and tag technique

Dataset used in this talk:

- 2.93 fb⁻¹ at Ecm = 3.773 GeV (~3.6x larger than CLEO's): D are produced via $e^+e^- \rightarrow \psi(3770) \rightarrow D\bar{D}$
- 3.19 fb⁻¹ at Ecm = 4.178 GeV (~5.3x larger than CLEO's): D_s are produced mostly via $e^+e^- \rightarrow D_s^{\pm}D_s^{*\mp}, D_s^{*\mp} \rightarrow \pi^0/\gamma D_s^{\mp}$

Two ways to study $D_{(s)}$ decays:

- Single Tag (ST): reconstruct only one of the $D\bar{D}$ ($D_s^+D_s^-$)
- **Double Tag (DT):** reconstruct both of $D\bar{D}$ ($D_s^+D_s^-$)

DT provides access to absolute BFs.

DT provides clean samples for amplitude analysis.

(Charge-conjugate states are implied throughout this talk)

N_{D0D0} = (10,597±28±98)×10³

N_{D+D-} = (8,296±31±65)×10³ produced

N_{Ds*Ds} ~ 3M produced

Observation of pure W-annihilation decay $D_s^+ ightarrow p ar{n}$

- $D_s^+
 ightarrow p ar{n}$ is the only baryonic decay of charmed meson and can proceed only through *W*-annihilation process,
 - Short-distance expected: BF~10⁻⁶

Long-distance enhance to: BF~10⁻³

The large BF (~10⁻³) indicates large final state interaction(FSI) effect and is important to understand the dynamical enhancement of *W*-annihilation.

• First evidence was reported by CLEO with a signal of 13.0 ± 3.6 events with BF = $(1.30 \pm 0.36^{+0.12}_{-0.16}) \times 10^{-3}$ (PRL100, 181802(2008)).

Observation of $D_s^+ \to p\bar{n}$

PRD 99, 031101(R) (2019)

Tag modes:

$BF = (1.21 \pm 0.10 \pm 0.05) \times 10^{-3}$

- Confirm CLEO's measurement with greatly improved precision.
- Consistent with "long-distance" expectation (PLB663, 326).

Observation of pure W-annihilation decays $D_s^+ ightarrow \omega \pi^+, \, D_s^+ ightarrow a_0(980) \pi$

- $D_s^+ \to \omega \pi^+, D_s^+ \to a_0(980)\pi$ can proceed only via *W*-annihilation process:
 - factorizable short-distance contribution is helicity suppressed,
 - non-factorizable long-distance contribution induced by FSI dominate,

which makes the input from experimental measurement to be the unique method to determine the *W*-annihilation amplitude.

• With the measured BF of $D_s^+ \rightarrow \omega \pi^+$ as one of the inputs , Q. Qin et al. (PRD89, 054006) predicts:

 $\mathcal{B}(D_s^+ \to \omega K^+) = 0.6 \times 10^{-3}, A_{\rm CP}(D_s^+ \to \omega K^+) = -0.6 \times 10^{-3} \text{ (without } \rho - \omega \text{ mixing)}$ $\mathcal{B}(D_s^+ \to \omega K^+) = 0.07 \times 10^{-3}, A_{\rm CP}(D_s^+ \to \omega K^+) = -2.3 \times 10^{-3} \text{ (with } \rho - \omega \text{ mixing)}$ Among the largest expected A_{CP} observed in charmed decays

• $D_s^+ \to \omega \pi^+$: Evidence by CLEO, BF= $(2.1 \pm 0.9 \pm 0.1) \times 10^{-3}$ with a signal of 6.0 ± 2.4 events. $D_s^+ \to \omega K^+$: CLEO set an UL = 2.4×10^{-3} @90% C.L. (PRD80, 051102(R) (2009))

Observation of $D_s^+ \rightarrow \omega \pi^+$ and $D_s^+ \rightarrow \omega K^+$ PRD 99, 091101(R) (2019)

- Tag modes: $D_s^- \to K_S^0 K^-, D_s^- \to K^+ K^- \pi^-$. Total ST yield ~ 0.167M.
- Double tag: average mass of two D_s mesons closest to the PDG value.

Fit to the invariant mass $M_{\pi^+\pi^-\pi^0}$ to get the DT yield:

Consistent with CLEO's measurement, but more precise.

 $\mathcal{B}(D_s^+ \to \omega \pi^+) = (1.77 \pm 0.32_{\text{stat.}} \pm 0.13_{\text{sys.}}) \times 10^{-3},$ $\mathcal{B}(D_s^+ \to \omega K^+) = (0.87 \pm 0.24_{\text{stat.}} \pm 0.08_{\text{sys.}}) \times 10^{-3}.$ First observation !

• The measurement of $D_s^+ \rightarrow \omega K^+$ implies the $\rho - \omega$ mixing is negligible. (PRD89. 054006) Amplitude analysis of $D_s^+
ightarrow \pi^+ \pi^0 \eta$

 $D_s^+ \rightarrow a_0(980)^{+(0)} \pi^{0(+)}$ W-annihilation topology diagrams:

Events are selected with double tag:

• Tag modes:

$$\begin{split} D_s^- &\to K_S^0 K^-, D_s^- \to K^+ K^- \pi^-, D_s^- \to K_S^0 K^- \pi^0, D_s^- \to K^+ K^- \pi^- \pi^0, \\ D_s^- &\to K_S^0 K^+ \pi^- \pi^-, D_s^- \to \pi^- \eta_{\gamma\gamma}, D_s^- \to \pi^- \eta_{\pi^+ \pi^- \eta}' \end{split}$$

• Multi-variate analysis is performed to suppress the background from fake η .

A sample of 1239 events with purity $(97.7 \pm 0.5)\%$ is used to perform the amplitude analysis.

Observation of $D_s^+ \rightarrow a_0(980)\pi$

PRL 123, 112001 (2019)

Phases, and fit fractions (FFs) for intermediate processes:

Amplitude	ϕ_n (rad)	FF_n
$D_s^+ \rightarrow \rho^+ \eta$	0.0 (fixed)	$0.783 \pm 0.050 \pm 0.021$
$D_s^+ \rightarrow (\pi^+ \pi^0)_V \eta$	$0.612 \!\pm\! 0.172 \!\pm\! 0.342$	$0.054 \pm 0.021 \pm 0.025$
$D_s^+ \rightarrow a_0(980)\pi$	$2.794 {\pm} 0.087 {\pm} 0.044$	$0.232 \pm 0.023 \pm 0.033$

The amplitudes agree with: $A(D_s^+ \rightarrow a_0(980)^+\pi^0) = -A(D_s^+ \rightarrow a_0(980)^0\pi^+)$ within stat. uncertainty, thus we set the magnitudes to be the same with the phase difference fixed to π .

Dots with error bar: data; solid: total fit; dashed: $D_s^+ \to \rho^+ \eta$; dotted: $D_s^+ \to (\pi^+ \pi^0)_V \eta$; long dashed: $D_s^+ \to a_0(980)\pi$ (with a stat. significance of 16.2 σ). 10

Branching Fraction Results of $D_s^+ \rightarrow \pi^+ \pi^0 \eta$

PRL 123, 112001 (2019)

The measured $\mathcal{B}(D_s^+ \to a_0(980)^+ \pi^0)$ is larger than other measured pure *W*-annihilation decays ($D_s^+ \to p\bar{n}, D_s^+ \to \omega\pi^+$) by one order.

This provides theoretical challenge in understanding such a large *W*-annihilation contribution in $D \rightarrow SP$ (*S*=scalar; *P*=pseudo-scalar).

Amplitude analysis of $D \to K \pi \pi \pi$

• The measurement of the sub-modes in $D \to K\pi\pi\pi$ provides a window to study the decays $D \to AP$ and $D \to VV$ (A=axial-vector, V=vector),

both of them are important in learning the CPV in charm decays but less effective experimental measurements.

- The knowledge of sub-modes can be widely used in many measurements: Branching fraction measurement Strong phase measurement CKM unitary triangle measurement
- There are seven $D \to K\pi\pi\pi$ modes:

 $D^{0} \to K^{-}\pi^{+}\pi^{+}\pi^{-}, K^{-}\pi^{+}\pi^{0}\pi^{0}, K^{0}_{S}\pi^{+}\pi^{-}\pi^{0}, K^{0}_{S}\pi^{0}\pi^{0}\pi^{0}\pi^{0} \text{ and } D^{+} \to K^{-}\pi^{+}\pi^{+}\pi^{0}, K^{0}_{S}\pi^{+}\pi^{+}\pi^{-}, K^{0}_{S}\pi^{+}\pi^{0}\pi^{0}\pi^{0} \text{ .}$

Previous measurements of sub-modes in $D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-, K_S^0 \pi^+ \pi^- \pi^0$ and $D^+ \rightarrow K^- \pi^+ \pi^0, K_S^0 \pi^+ \pi^+ \pi^-$ have been perform by Mark III and E691. Both measurements are affected by low statistics.

• In this talk, we report the amplitude analysis results of $D^0 \rightarrow K^- \pi^+ \pi^-, D^0 \rightarrow K^- \pi^+ \pi^0 \pi^0, D^+ \rightarrow K_S^0 \pi^+ \pi^+ \pi^-$

Amplitude Analysis Results of $D^0 o K^- \pi^+ \pi^+ \pi^-$

Double tag: The D^0 is reconstructed by $K^-\pi^+\pi^+\pi^-$ with \overline{D}^0 reconstructed by $K^+\pi^-$. PRD95,072010 A sample of 15912 events with purity ~99.4% is used to perform the amplitude analysis.

The data can be described with 23 amplitudes:

Amplitude	ϕ_i	Fit fraction (%)
$D^0[S] o \bar{K}^* \rho^0$	$2.35 \pm 0.06 \pm 0.18$	$6.5 \pm 0.5 \pm 0.8$
$D^0[P] \to \bar{K}^* \rho^0$	$-2.25 \pm 0.08 \pm 0.15$	$2.3\pm0.2\pm0.1$
$D^0[D] o \bar{K}^* \rho^0$	$2.49 \pm 0.06 \pm 0.11$	$7.9\pm0.4\pm0.7$
$D^0 \to K^- a_1^+ (1260), a_1^+ (1260)[S] \to \rho^0 \pi^+$	0(fixed)	$53.2 \pm 2.8 \pm 4.0$
$D^0 \to K^- a_1^+(1260), a_1^+(1260)[D] \to \rho^0 \pi^+$	$-2.11 \pm 0.15 \pm 0.21$	$0.3\pm0.1\pm0.1$
$D^0 \to K_1^-(1270)\pi^+, \ K_1^-(1270)[S] \to \bar{K}^{*0}\pi^-$	$1.48 \pm 0.21 \pm 0.24$	$0.1\pm0.1\pm0.1$
$D^0 \to K_1^-(1270)\pi^+, \ K_1^-(1270)[D] \to \bar{K}^{*0}\pi^-$	$3.00 \pm 0.09 \pm 0.15$	$0.7\pm0.2\pm0.2$
$D^0 \to K_1^-(1270)\pi^+, \ K_1^-(1270) \to K^-\rho^0$	$-2.46 \pm 0.06 \pm 0.21$	$3.4\pm0.3\pm0.5$
$D^0 \to (\rho^0 K^-)_{\rm A} \pi^+, \ (\rho^0 K^-)_{\rm A} [D] \to K^- \rho^0$	$-0.43 \pm 0.09 \pm 0.12$	$1.1\pm0.2\pm0.3$
$D^0 \to (K^- \rho^0)_{\rm P} \pi^+$	$-0.14 \pm 0.11 \pm 0.10$	$7.4\pm1.6\pm5.7$
$D^0 \to (K^- \pi^+)_{\text{S-wave}} \rho^0$	$-2.45 \pm 0.19 \pm 0.47$	$2.0\pm0.7\pm1.9$
$D^0 \rightarrow (K^- \rho^0)_{\rm V} \pi^+$	$-1.34 \pm 0.12 \pm 0.09$	$0.4\pm0.1\pm0.1$
$D^0 \to (\bar{K}^{*0}\pi^-)_{\rm P}\pi^+$	$-2.09 \pm 0.12 \pm 0.22$	$2.4\pm0.5\pm0.5$
$D^0 \to \bar{K}^{*0}(\pi^+\pi^-)_{\rm S}$	$-0.17 \pm 0.11 \pm 0.12$	$2.6 \pm 0.6 \pm 0.6$
$D^0 ightarrow (ar{K}^{*0} \pi^-)_{ m V} \pi^+$	$-2.13 \pm 0.10 \pm 0.11$	$0.8 \pm 0.1 \pm 0.1$
$D^0 \rightarrow ((K^-\pi^+)_{\text{S-wave}}\pi^-)_A \pi^+$	$-1.36 \pm 0.08 \pm 0.37$	$5.6 \pm 0.9 \pm 2.7$
$D^0 \to K^-((\pi^+\pi^-)_{\rm S}\pi^+)_{\rm A}$	$-2.23 \pm 0.08 \pm 0.22$	$13.1 \pm 1.9 \pm 2.2$
$D^0 \rightarrow (K^- \pi^+)_{\text{S-wave}} (\pi^+ \pi^-)_{\text{S}}$	$-1.40 \pm 0.04 \pm 0.22$	$16.3 \pm 0.5 \pm 0.6$
$D^0[S] \to (K^- \pi^+)_{\rm V} (\pi^+ \pi^-)_{\rm V}$	$1.59 \pm 0.13 \pm 0.41$	$5.4 \pm 1.2 \pm 1.9$
$D^0 \rightarrow (K^- \pi^+)_{\text{S-wave}} (\pi^+ \pi^-)_{\text{V}}$	$-0.16 \pm 0.17 \pm 0.43$	$1.9 \pm 0.6 \pm 1.2$
$D^0 \to (K^- \pi^+)_{\rm V} (\pi^+ \pi^-)_{\rm S}$	$2.58 \pm 0.08 \pm 0.25$	$2.9 \pm 0.5 \pm 1.7$
$D^0 \to (K^- \pi^+)_{\rm T} (\pi^+ \pi^-)_{\rm S}$	$-2.92 \pm 0.14 \pm 0.12$	$0.3 \pm 0.1 \pm 0.1$
$D^0 \rightarrow (K^- \pi^+)_{\text{S-wave}} (\pi^+ \pi^-)_{\text{T}}$	$2.45 \pm 0.12 \pm 0.37$	$0.5\pm0.1\pm0.1$

13

Amplitude Analysis Results of $D^0 o K^- \pi^+ \pi^+ \pi^-$

Fit projections:

For the two identical π^+ , we require $m(\pi_1^+\pi^-) > m(\pi_2^+\pi^-)$.

PRD95,072010

Branching Fraction Results of $D^0 o K^- \pi^+ \pi^+ \pi^-$

Results of branching fractions for different components:

Component	Branching fraction (%)	PDG value (%)		
$D^0 \to \bar{K}^{*0} \rho^0$	$0.99 \pm 0.04 \pm 0.04 \pm 0.03$	1.05 ± 0.23		
$D^0 \to K^- a_1^+ (1260)(\rho^0 \pi^+)$	$4.41 \pm 0.22 \pm 0.30 \pm 0.13$	3.6 ± 0.6		
$D^0 \to K_1^-(1270)(\bar{K}^{*0}\pi^-)\pi^+$	$0.07 \pm 0.01 \pm 0.02 \pm 0.00$	0.29 ± 0.03		
$D^0 \to K_1^-(1270)(K^-\rho^0)\pi^+$	$0.27 \pm 0.02 \pm 0.04 \pm 0.01$			
$D^0 \to K^- \pi^+ \rho^0$	$0.68 \pm 0.09 \pm 0.20 \pm 0.02$	0.51 ± 0.23		
$D^0 ightarrow ar{K}^{*0} \pi^+ \pi^-$	$0.57 \pm 0.03 \pm 0.04 \pm 0.02$	0.99 ± 0.23		
$D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$	$1.77 \pm 0.05 \pm 0.04 \pm 0.05$	1.88 ± 0.26		
	stat. uncertainty from FF			
	uncertainties related to BF($D^0 \rightarrow K^- \pi^+ \pi^- \pi^-$) in PDG			

Macro Gersabeck, Experimental Charm Physics, 2018 Weihai High-Energy Physics School.

- First study of this decay in this millennium
- Paving the way for time-dependent amplitude analysis

PRD95,072010

Amplitude Analysis Results of $D^0 o K^- \pi^+ \pi^0 \pi^0$

Double tag: The D^0 is reconstructed by $K^-\pi^+\pi^0\pi^0$ with \overline{D}^0 reconstructed by $K^+\pi^-$. **A sample of 5950 events with purity ~99% is used to perform the amplitude analysis.** The data can be described with 26 amplitudes:

PRD99,092008 (2019)

Amplitude mode	$\mathbf{FF}(\%)$	Phase (ϕ)
$D \rightarrow SS$		
$D \rightarrow (K^- \pi^+)_{S-\text{wave}} (\pi^0 \pi^0)_S$	$6.92 \pm 1.44 \pm 2.86$	$-0.75 \pm 0.15 \pm 0.47$
$D \rightarrow (K^- \pi^0)_{S-\text{wave}} (\pi^+ \pi^0)_S$	$4.18 \pm 1.02 \pm 1.77$	$-2.90 \pm 0.19 \pm 0.47$
$D \to AP, A \to VP$		
$D \to K^{-}a_1(1260)^+, \rho^+\pi^0[S]$	$28.36 \pm 2.50 \pm 3.53$	0 (fixed)
$D \to K^- a_1(1260)^+, \rho^+ \pi^0[D]$	$0.68 \pm 0.29 \pm 0.30$	$-2.05 \pm 0.17 \pm 0.25$
$D \to K_1(1270)^- \pi^+, K^{*-} \pi^0[S]$	$0.15 \pm 0.09 \pm 0.18$	$1.84 \pm 0.34 \pm 0.43$
$D \to K_1(1270)^0 \pi^0, K^{*0} \pi^0[S]$	$0.39 \pm 0.18 \pm 0.30$	$-1.55 \pm 0.20 \pm 0.26$
$D \to K_1(1270)^0 \pi^0, K^{*0} \pi^0[D]$	$0.11 \pm 0.11 \pm 0.13$	$-1.35 \pm 0.43 \pm 0.48$
$D \to K_1(1270)^0 \pi^0, K^- \rho^+[S]$	$2.71 \pm 0.38 \pm 0.29$	$-2.07 \pm 0.09 \pm 0.20$
$D \to (K^{*-}\pi^0)_A \pi^+, K^{*-}\pi^0[S]$	$1.85 \pm 0.62 \pm 1.11$	$1.93 \pm 0.10 \pm 0.15$
$D \to (K^{*0}\pi^0)_A \pi^0, K^{*0}\pi^0[S]$	$3.13 \pm 0.45 \pm 0.58$	$0.44 \pm 0.12 \pm 0.21$
$D \to (K^{*0}\pi^0)_A \pi^0, K^{*0}\pi^0[D]$	$0.46 \pm 0.17 \pm 0.29$	$-1.84 \pm 0.26 \pm 0.42$
$D \to (\rho^+ K^-)_A \pi^0, K^- \rho^+ [D]$	$0.75 \pm 0.40 \pm 0.60$	$0.64 \pm 0.36 \pm 0.53$
$D \to AP, A \to SP$		
$D \to ((K^-\pi^+)_{S-\text{wave}}\pi^0)_A \pi^0$	$1.99 \pm 1.08 \pm 1.55$	$-0.02 \pm 0.25 \pm 0.53$
$D \rightarrow VS$		
$D \to (K^- \pi^0)_{S-\text{wave}} \rho^+$	$14.63 \pm 1.70 \pm 2.41$	$-2.39 \pm 0.11 \pm 0.35$
$D \to K^{*-}(\pi^+\pi^0)_S$	$0.80 \pm 0.38 \pm 0.26$	$1.59 \pm 0.19 \pm 0.24$
$D \to K^{*0}(\pi^0 \pi^0)_S$	$0.12 \pm 0.27 \pm 0.27$	$1.45 \pm 0.48 \pm 0.51$
$D \to VP, V \to VP$		BEST
$D \to (K^{*-}\pi^+)_V \pi^0$	$2.25 \pm 0.43 \pm 0.45$	$0.52 \pm 0.12 \pm 0.17$
$D \to VV$		
$D[S] \to K^{*-} \rho^+$	$5.15 \pm 0.75 \pm 1.28$	$1.24 \pm 0.11 \pm 0.23$
$D[P] \to K^{*-} \rho^+$	$3.25 \pm 0.55 \pm 0.41$	$-2.89 \pm 0.10 \pm 0.18$
$D[D] \to K^{*-} \rho^+$	$10.90 \pm 1.53 \pm 2.36$	$2.41 \pm 0.08 \pm 0.16$
$D[P] \rightarrow (K^- \pi^0)_V \rho^+$	$0.36 \pm 0.19 \pm 0.27$	$-0.94 \pm 0.19 \pm 0.28$
$D[D] \rightarrow (K^- \pi^0)_V \rho^+$	$2.13 \pm 0.56 \pm 0.92$	$-1.93 \pm 0.22 \pm 0.25$
$D[D] \rightarrow K^{*-}(\pi^+\pi^0)_V$	$1.66 \pm 0.52 \pm 0.61$	$-1.17 \pm 0.20 \pm 0.39$
$D[S] \to (K^- \pi^0)_V (\pi^+ \pi^0)_V$	$5.17 \pm 1.91 \pm 1.82$	$-1.74 \pm 0.20 \pm 0.31$
$D \to TS$		
$D \to (K^- \pi^+)_{S-\text{wave}} (\pi^0 \pi^0)_T$	$0.30 \pm 0.21 \pm 0.32$	$-2.93 \pm 0.31 \pm 0.82$
$D \rightarrow (K^- \pi^0)_{S-\text{wave}} (\pi^+ \pi^0)_T$	$0.14 \pm 0.12 \pm 0.10$	$2.23 \pm 0.38 \pm 0.65$

16

Amplitude Analysis Results of $D^0 o K^- \pi^+ \pi^0 \pi^0$

PRD99,092008 (2019)

Fit projections:

Points with error bars: data, red histograms: fit.

Branching Fraction Results of $D^0 o K^- \pi^+ \pi^0 \pi^0$

PRD99,092008 (2019)

Fits to M_{BC} distributions of DT and ST data:

DT yield = 6101 ± 83 ; ST yield = 534581 ± 769 .

The amplitude analysis result is used to determine the detection efficiency.

 $\mathcal{B}(D^0 \to K^- \pi^+ \pi^0 \pi^0) = (8.86 \pm 0.13(\text{stat}) \pm 0.19(\text{syst}))\%$

First measurement

Amplitude Analysis Results of $D^+ o K^0_S \pi^+ \pi^+ \pi^-$

PRD100,072008 (2019)

Double tag: The D^+ is reconstructed by $K_S^0 \pi^+ \pi^+ \pi^-$ with D^- reconstructed by $K^+ \pi^- \pi^-$.

A sample of 4559 events with purity ~97.5% is used to perform the amplitude analysis.

The data can be described with 12 amplitudes:

		B€SⅢ
Amplitude	ϕ	Fit fraction
$D^+ \to K_S^0 a_1(1260)^+, a_1(1260)^+ \to \rho^0 \pi^+[S]$	0.000(fixed)	$0.567 \pm 0.020 \pm 0.044$
$D^+ \to K_S^0 a_1(1260)^+, a_1(1260)^+ \to f_0(500)\pi^+$	$-2.023 \pm 0.068 \pm 0.113$	$0.050 \pm 0.006 \pm 0.007$
$D^+ \to \bar{K}_1(1400)^0 \pi^+, \bar{K}_1(1400)^0 \to K^{*-} \pi^+[S]$	$-2.714 \pm 0.038 \pm 0.051$	$0.380 \pm 0.013 \pm 0.014$
$D^+ \to \bar{K}_1(1400)^0 \pi^+, \bar{K}_1(1400)^0 \to K^{*-} \pi^+[D]$	$3.431 \pm 0.137 \pm 0.117$	$0.015 \pm 0.004 \pm 0.005$
$D^+ \to \bar{K}_1(1270)^0 \pi^+, \bar{K}_1(1270)^0 \to K^0_S \rho^0[S]$	$-0.418 \pm 0.070 \pm 0.087$	$0.036 \pm 0.004 \pm 0.002$
$D^+ \to \bar{K}(1460)^0 \pi^+, \bar{K}(1460)^0 \to K_S^0 \rho^0$	$-1.850\pm0.120\pm0.223$	$0.014 \pm 0.004 \pm 0.003$
$D^+ \to (K^0_S \rho^0)_A [D] \pi^+$	$2.328 \pm 0.097 \pm 0.068$	$0.011 \pm 0.003 \pm 0.002$
$D^+ \to K^0_S(\rho^0 \pi^+)_P$	$1.656 \pm 0.083 \pm 0.056$	$0.031 \pm 0.004 \pm 0.010$
$D^+ \to (K^{*-}\pi^+)_A[S]\pi^+$	$1.962 \pm 0.047 \pm 0.073$	$0.132 \pm 0.011 \pm 0.011$
$D^+ \to (K^{*-}\pi^+)_A[D]\pi^+$	$0.989 \pm 0.158 \pm 0.229$	$0.013 \pm 0.004 \pm 0.004$
$D^+ \to (K^0_S(\pi^+\pi^-)_S)_A\pi^+$	$-2.935 \pm 0.060 \pm 0.125$	$0.051 \pm 0.004 \pm 0.003$
$D^+ \to ((K_S^0 \pi^-)_S \pi^+)_P \pi^+$	$1.864 \pm 0.069 \pm 0.288$	$0.022 \pm 0.003 \pm 0.003$

Amplitude Analysis Results of $D^+ o K^0_S \pi^+ \pi^+ \pi^-$

Fit projections: B€SⅢ 150(b) Events/(10 MeV/c²) Events/(10 MeV/c²) Events/(10 MeV/c²) 200 100 0.8 0.8 1.2 0.8 1.2 1.2 1.4 1.4 $m(K_{c}^{0}\pi)$ (GeV/c²) $m(K_{s}^{0}\pi_{1}^{+}) (GeV/c^{2})$ $m(K_{c}^{0}\pi_{2}^{+})$ (GeV/c²) Events/(10 MeV/c²) (d) (e) Events/(10 MeV/c²) Events/(10 MeV/c²) 200 100 100 0.4 0.8 0.6 0.8 1.2 1.2 1.6 0.6 0.4 1.4 $m(K_{e}^{0}\pi_{1}^{+}\pi^{-}) (GeV/c^{2})$ $m(\pi_2^+\pi_1^-) (GeV/c^2)$ $m(\pi_1^+\pi_1^-)$ (GeV/c²) (h) Events/(10 MeV/ c^2) Events/(10 MeV/c²) 100

1.6

 $m(K_{s}^{0}\pi_{2}^{+}\pi^{-}) (GeV/c^{2})$

Points with error bars: data, red histograms: fit, green histograms: background estimated from MC. For the two identical π^+ , we require $m(\pi_1^+\pi^-) < m(\pi_2^+\pi^-)$.

0.6

0.8

 $m(\pi^{+}\pi^{+}\pi^{-}) (GeV/c^{2})$

1.2

PRD100,072008 (2019)

Branching fraction results of $D^+ o K^0_S \pi^+ \pi^+ \pi^-$

PRD100,072008 (2019)

The preliminary results of branching fractions for different components:

		<u>₽</u> €<∭_		
Component	Brancl	hing fract	ion (%)	
$D^+ \to K^0_S a_1(1260)^+ (\rho^0 \pi^+)$	1.197 ± 0.01	$.062 \pm 0.1$	20 ± 0.0)44
$D^+ \rightarrow K_S^0 a_1(1260)^+ (f_0(500)\pi^+)$	0.163 ± 0.0	$.021 \pm 0.0$	0.053 ± 0.00)06
$D^+ \to \bar{K}_1 (1400)^0 (K^{*-} \pi^+) \pi^+$	0.642 ± 0.642	$.036 \pm 0.0$	033 ± 0.0)24
$D^+ \to \bar{K}_1(1270)^0 (K^0_S \rho^0) \pi^+$	0.071 ± 0.01	$.009 \pm 0.0$	0.019 ± 0.000	003
$D^+ \to \bar{K}(1460)^0 (K^{*-}\pi^+)\pi^+$	0.202 ± 0.202	$.018 \pm 0.0$	031 ± 0.0	007
$D^+ \to \bar{K}(1460)^0 (K^0_S \rho^0) \pi^+$	0.024 ± 0.024	$.006 \pm 0.0$	0.015 ± 0.000)09
$D^+ \to \bar{K}_1(1650)^0 (K^{*-}\pi^+)\pi^+$	0.048 ± 0.021	$.012 \pm 0.0$	0.042 ± 0.00	002
$D^+ \to K^0_S \pi^+ \rho^0$	0.190 ± 0.00	$.021 \pm 0.1$	03 ± 0.0	007
$D^+ \rightarrow K^0_S \pi^+ \pi^+ \pi^-$	0.241 ± 0.241	$.018 \pm 0.0$	0.026 ± 0.000)09
			ŕ	
	stat. uncertain	ty from FF		
	sys.	uncertainty	from FF	
	uncertainties	related to BI	$(D^+ \rightarrow K_S^0)$	$\pi^+\pi$

• The measurements of the decays with $K_1(1270)$ and $K_1(1400)$ involved provide some experimental information in understanding the mixture of the two excited Kaons.

PLB707,116

• $D^+ \to \overline{K}_1(1400)^0 \pi^+$ is found to be larger, unlike what we saw in the two D⁰ cases.

Measurement of the Branching Fractions of D ightarrow PP

- The analysis of D → PP modes provides materials for the study of SU(3) breaking effect.
- Most of the $D \rightarrow PP$ decays have been studied by CLEO in 2010, other measurements come from Belle , BABAR and CDF , etc.

Branching fraction results of D o PP

PRD97,072004

Mode	\mathcal{B} (×10 ⁻³)	$\mathcal{B}_{PDG}~(\times 10^{-3})$
$D^+ o \pi^+ \pi^0$	$1.259 \pm 0.033 \pm 0.023$	1.24 ± 0.06
$D^+ \rightarrow K^+ \pi^0$	$0.232 \pm 0.021 \pm 0.006$	0.189 ± 0.025
$D^+ o \pi^+ \eta$	$3.790 \pm 0.070 \pm 0.068$	3.66 ± 0.22
$D^+ o K^+ \eta$	$0.151 \pm 0.025 \pm 0.014$	0.112 ± 0.018
$D^+ o \pi^+ \eta^\prime$	$5.12 \pm 0.14 \pm 0.024$	4.84 ± 0.31
$D^+ \to K^+ \eta'$	$0.164 \pm 0.051 \pm 0.024$	0.183 ± 0.023
$D^+ \rightarrow K^0_S \pi^+$	$15.91 \pm 0.06 \pm 0.30$	15.3 ± 0.6
$D^+ \rightarrow K_S^{0} K^+$	$3.183 \pm 0.029 \pm 0.060$	2.95 ± 0.15
$D^0 ightarrow \pi^+ \pi^-$	$1.508 \pm 0.018 \pm 0.022$	1.421 ± 0.025
$D^0 \rightarrow K^+ K^-$	$4.233 \pm 0.021 \pm 0.064$	4.01 ± 0.07
$D^0 o K^{\mp} \pi^{\pm}$	$38.98 \pm 0.06 \pm 0.51$	39.4 ± 0.4
$D^0 ightarrow K_S^0 \pi^0$	$12.39 \pm 0.06 \pm 0.27$	12.0 ± 0.4
$D^0 ightarrow K_S^{ m 0} \eta$	$5.13 \pm 0.07 \pm 0.12$	4.85 ± 0.30
$D^0 \to K_{\rm S}^{\tilde{0}} \eta'$	$9.49 \pm 0.20 \pm 0.36$	9.5 ± 0.5

BFs of $D \rightarrow PP$ are obtained using ST method:

The results from BESIII are consistent with the world average values within uncertainties. The BFs of $D^+ \rightarrow \pi^+\pi^0, K^+\pi^0, \pi^+\eta, \pi^+\eta', K_S^0\pi^+, K_S^0K^+$ and $D^0 \rightarrow K_S^0\pi^0, K_S^0\eta, K_S^0\eta'$ are determined with improved precision.

$D_s^+ \to K_S^0 K^+$ and $K_L^0 K^+$

As in $D \to K^0 \pi$ and $D \to \overline{K}^0 \pi$ could interfere,

So can the CF and DCS amplitudes in Ds decays: $D_s^+ \rightarrow K_S^0 K^+$ and $K_L^0 K^+$

Such interferences effect could also lead to CPV: $A_{\rm CP} \sim 10^{-3}$, predicted by F.S. Yu et al. (PRL 119, 181802(2017)).

$$\begin{split} &\mathcal{B}(D_s^+ \to K_S^0 K^+) = (1.425 \pm 0.038_{\text{stat.}} \pm 0.031_{\text{syst.}})\% \quad \text{Consistent with PDG value} \\ &\mathcal{B}(D_s^+ \to K_L^0 K^+) = (1.485 \pm 0.039_{\text{stat.}} \pm 0.046_{\text{syst.}})\% \quad \mathbf{1}^{\text{st}} \text{ measurement} \\ &K_S^{10} - K_L^0 \text{ asymmetry } \frac{\mathcal{B}(D \to K_S^0 K) - \mathcal{B}(D \to K_L^0 K)}{\mathcal{B}(D \to K_S^0 K) + \mathcal{B}(D \to K_L^0 K)} = (-2.1 \pm 1.9 \pm 1.6)\%. \\ &A_{\text{CP}}(D_s^\pm \to K_S^0 K^\pm) = (0.6 \pm 2.8 \pm 0.6)\% \text{ and } A_{\text{CP}}(D_s^\pm \to K_L^0 K^\pm) = (-1.1 \pm 2.6 \pm 0.6)\%. \end{split}$$

 $D^+ \rightarrow K^0_S K^+, \ K^0_S K^+ \pi^0, \ K^0_L K^+ \ \text{and} \ K^0_L K^+ \pi^0$

PRD99,032002 (2019)

As looked for similar final states, but in D^+ decays, So added an additional π^0 .

Signal mode	$D(D^{-})(\wedge 10^{-})$	$D(D^{\prime})$ (×10^{\prime})	$\mathcal{D}(\times 10^{-3})$	$\mathcal{D}(\mathbf{IDG})(\mathbf{\times I0})$	$\mathcal{A}_{CP}(\mathcal{N})$
$K^0_{ m s}K^{\pm}$	$2.96 \pm 0.11 \pm 0.08$	$3.07 \pm 0.12 \pm 0.08$	$3.02 \pm 0.09 \pm 0.08$	2.95 ± 0.15	$-1.8 \pm 2.7 \pm 1.6$
$K^0_S K^{\pm} \pi^0$	$5.14 \pm 0.27 \pm 0.24$	$5.00 \pm 0.26 \pm 0.22$	$5.07 \pm 0.19 \pm 0.23$		$1.4 \pm 3.7 \pm 2.4$
$K_L^{reve{0}}K^\pm$	$3.07 \pm 0.14 \pm 0.10$	$3.34 \pm 0.15 \pm 0.11$	$3.21 \pm 0.11 \pm 0.11$		$-4.2 \pm 3.2 \pm 1.2$
$K_L^{\overline{0}}K^\pm\pi^0$	$5.21 \pm 0.30 \pm 0.22$	$5.27 \pm 0.30 \pm 0.22$	$5.24 \pm 0.22 \pm 0.22$		$-0.6 \pm 4.1 \pm 1.7$

1st measurements!

Summary

ESI provides large data samples close to charm related threshold to study the $D_{(s)}$ hadronic decays:

- Observation of pure W-annihilation decays $D_s^+ \to p\bar{n}, D_s^+ \to \omega \pi^+, D_s^+ \to a_0(980)\pi$
 - → Our results on $D_s^+ \rightarrow p\bar{n}, D_s^+ \rightarrow \omega \pi^+$ confirm CLEO's measurements with greatly improved precision.
 - ▶ Our results on $D_s^+ \to a_0(980)\pi$ are larger than other measured pure *W*-annihilation decays ($D_s^+ \to p\bar{n}, D_s^+ \to \omega\pi^+$) by one order.
- Amplitude analysis of $D \to K \pi \pi \pi$:

➤ Amplitudes analyses of $D^0 \to K^- \pi^+ \pi^+ \pi^-$, $D^0 \to K^- \pi^+ \pi^0 \pi^0$, $D^+ \to K^0_S \pi^+ \pi^+ \pi^$ are performed. $\mathcal{B}(D^0 \to K^- \pi^+ \pi^0 \pi^0) = (8.86 \pm 0.13 (\text{stat}) \pm 0.19 (\text{syst}))\%$

• Branching fractions of $D \to PP$: The BFs of 14 decay modes, $D_s^+ \to K_{S,L}^0 K^+$ and $D^+ \to K_{S,L}^0 K^+(\pi^0)$ are obtained.

More measurements in $D_{(s)}$ hadronic decays are coming.

Thank you for your attention!