超级t-Charm装置上的物理研 究亮点及预研进展

郑阳恒

zhengyh@ucas.edu.cn

(代表"STCF Steering Committee")

University of Chinese Academy of Sciences

理论与实验联合专题研讨会,2019年11月24日,暨南大学

Outline

超級t-Charm装置 Super Tau Charm Facility (STCF)

 Selected Highlight topics & CDR
 Strategy & Prospect of Science-Technology Review
 Funding Status & Candidate sites
 Summary

桑エ厂 -- LHCb实验

◆强子对撞实验(粲强子产生截面巨大, 能量Boost)

◆-3 fb⁻¹: 60 x 10¹¹ 个cc, 未来将 > 50 fb⁻¹
◆在长寿命带电径迹末态衰变中, 优势巨大(电子末态除外)
◆部分重建 ⇒ 可重建v(半轻衰变)

◆劣势:测量包含中性末态粒子γ,π⁰的衰变
 道,电子末态,顶点不能太远

粲エ厂 -- Belle/Belle-II实验

◆正负电子对撞实验(触发效率接近100%) ◆Belle (亮度世界纪录: 2.1 x 10³⁴ 积分亮 度: ~1000 fb⁻¹): 1.3 x 10⁹ 个粲介子 ◆cc的统计量少于LHCb,但多于BESIII ♦能量Boost ⇒ 粲强子衰变顶点重建 ◆Belle-II的亮度再提高了40倍! ◆ISR ⇒ 对撞质心系能量覆盖τ-Charm能 R

BESIII实验合作组

Europe (16)

Political Map of the World, June 1999

Germany: Univ. of Bochum, Univ. of Giessen, GSI

Univ. of Johannes Gutenberg Helmholtz Ins. In Mainz Mongolia (1) Russia: JINR Dubna; BINP Novosibirsk Institue of P& Korea (1) Italy: Univ. of Torino, Frascati Lab, Univ. of Ferrara Netherland: KVI/Univ. of Groningen Sweden: Uppsala Univ. **Turkey: Turkey Accelerator Center**

Anterctica

Pakistan (3)

Univ. of Punjab COMSAT CIIT India (1)

THEFT

来自15个国家的72个合作单 位合作成员约500人

ThailandTolyo Univ. China(43)

Seoul Nat. Univ.

SUT

Japan (1)

IHEP, CCAST, UCAS, Shandong Univ., USTC, Zhejiang Univ., Huangshan Coll. Huazhong Normal Univ., Wuhan Univ. Zhengzhou Univ., Henan Normal Univ. Peking Univ., Tsinghua Univ., Zhongshan Univ., Nankai Univ. xi Univ., Sichuan Univ., Univ. of South China Hunan Univ., Liaoning Univ. Nanjing Univ., Nanjing Normal Univ. Guangxi Normal Univ., Guangxi Univ. Suzhou Univ., Hangzhou Normal Univ. Lanzhou Univ., Henan Sci. and Tech. Univ. Beihang Univ., Fudan Univ., IMP, Univ. of Jinan SYSU

- ◆τ质量测量
- **R** scan
- **+**X(1835)
- ◆Zc系列
- ◆Ac产生衰变测量
- CKM & Decay constants & δ
- + Polarization of Baryons in J/ψ

Threshold

Publication of BESIII

Up to November, 2019: 286 publications, 62 PRL, Excellent in both number and quality http://bes3.ihep.ac.cn/pub/physics.htm ~20 PhD / year

Λ_c 衰变相关的物理结果产出

基于BESIII实验35天采集的Λ_c数据,发表了16篇文章 (7 PRLs) 代表性成果如下: PRL116.052001) (2016)

◆测量了一系列近20个衰变道的模型无关绝对分支比
 ◆刷新了实验测量精度⇒BESIII实验为强子QCD理论
 工具的开发提供了重要的实验数据

量精度大幅度改善

PDG2014

$\Gamma(p\overline{K}^0\pi^0)/\Gamma(pK)$	⁻ π ⁺)				Γ_7/Γ_2
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
$0.66 \pm 0.05 \pm 0.07$	774	ALAM	98	CLE2	$e^+ e^- pprox ~\Upsilon(4S)$
$\Gamma(\rho \overline{K}^0 \eta) / \Gamma(\rho K^-)$	π ⁺)				Г8/Г2
Unseen decay n	nodes of the	e η are included.			-, -
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
$0.25 \pm 0.04 \pm 0.04$	57	AMMAR	95	CLE2	$e^+ e^- pprox ~\Upsilon(4S)$
$\Gamma(\rho \overline{K}^0 \pi^+ \pi^-) / \Gamma($	$pK^{-}\pi^{+})$				Г9/Г2
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.51±0.06 OUR AVE	RAGE				
$0.52 \pm 0.04 \pm 0.05$	985	ALAM	98	CLE2	$e^+ e^- \approx \Upsilon(4S)$
$0.43 \pm 0.12 \pm 0.04$	83	AVERY	91	CLEO	$e^+ e^- 10.5 \text{ GeV}$
$0.98 \pm 0.36 \pm 0.08$	12	BARLAG	90 D	NA32	π^- 230 GeV
$\Gamma(pK^-\pi^+\pi^0)/\Gamma($	ρK ⁻ π ⁺)				Γ ₁₀ /Γ ₂
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.67±0.04±0.11	2606	ALAM	98	CLE2	$\overline{e^+ e^-} pprox \Upsilon(4S)$
$\Gamma(pK^*(892)^-\pi^+)$	/Γ(ρ <u></u> <i>κ</i> ⁰ π	$(\pi^{+}\pi^{-})$			Г ₁₁ /Г9
Unseen decay n	nodes of the	e K*(892) [—] are in	clude	d.	
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.44 ± 0.14	17	ALEEV	94	BIS2	nN 20-70 GeV
$\Gamma(p(K^-\pi^+)_{nonres})$	onant $\pi^{0})/$	′Γ(ρΚ ⁻ π ⁺)			Γ ₁₂ /Γ ₂
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0 72 1 0 10 1 0 05	67	BOZEK	03	NIA 22	CH 220 CoV

$\Gamma(pK_{S}^{0}\pi^{0})/\Gamma_{total}$ Γ_7/Γ VALUE (%) DOCUMENT ID COMMENT EVTS TECN 1.96±0.13 OUR FIT Error includes scale factor of 1 1.87±0.13±0.05 558 ABLIKIM 16 BES3 $e^+e^- \rightarrow \Lambda_c \overline{\Lambda}_c$, 4.599 GeV $\Gamma(pK_{S}^{0}\pi^{0})/\Gamma(pK^{-}\pi^{+})$ Γ_7/Γ_2 Measurements given as a \overline{K}^0 ratio have been divided by 2 to convert to a K_c^0 ratio. VALUE DOCUMENT ID TECN COMMEN 0.314±0.018 OUR FIT $0.33 \pm 0.03 \pm 0.04$ 774 ALAM 98 CLE2 $e^+e^- \approx \Upsilon(4S)$ $\Gamma(nK_{s}^{0}\pi^{+})/\Gamma_{total}$ Г8/Г VALUE (%) EVTS DOCUMENT ID COMMENT $1.82 \pm 0.23 \pm 0.11$ 83 ABLIKIM 17H BES3 $e^+ e^-$ at 4.6 GeV $\Gamma(p\overline{K}^0\eta)/\Gamma(pK^-\pi^+)$ Γ_9/Γ_2 Unseen decay modes of the η are included. VALUE EVTS DOCUMENT ID TECN COMMENT $0.25 \pm 0.04 \pm 0.04$ 57 AMMAR 95 CLE2 $e^+e^- \approx \Upsilon(4S)$ $\Gamma(pK_{S}^{0}\pi^{+}\pi^{-})/\Gamma_{total}$ Γ₁₀/Γ VALUE (%) EVTS DOCUMENT ID TECN COMMENT 1.59±0.12 OUR FIT Error includes scale factor of $1.53 \pm 0.11 \pm 0.09$ 485 ABLIKIM 16 BES3 $e^+e^- \rightarrow \Lambda_c \overline{\Lambda}_c$, 4.599 GeV $\Gamma(pK_{\varsigma}^{0}\pi^{+}\pi^{-})/\Gamma(pK^{-}\pi^{+})$ Γ_{10}/Γ_2 Measurements given as a \overline{K}^0 ratio have been divided by 2 to convert to a K_0^0 ratio. DOCUMENT ID TECN VALUE EVTS COMMEN 0.255±0.015 OUR FIT Error includes scale factor of 1.1. 0.257±0.031 OUR AVERAGE $0.26 \pm 0.02 \pm 0.03$ 985 ALAM 98 CLE2 $e^+e^- \approx \Upsilon(4S)$ $0.22\ \pm 0.06\ \pm 0.02$ AVERY CLEO e^+e^- 10.5 GeV 83 91 $0.49 \ \pm 0.18 \ \pm 0.04$ 12 BARLAG 90D NA32 π^- 230 GeV $\Gamma(pK^{-}\pi^{+}\pi^{0})/\Gamma_{\text{total}}$ Γ_{11}/Γ VALUE (%) EVTS DOCUMENT ID TECN COMMENT 4.42±0.31 OUR FIT Error includes scale factor of 4.53±0.23±0.30 1849 ABLIKIM 16 BES3 $e^+e^- \rightarrow \Lambda_c \overline{\Lambda}_c$, 4.599 GeV Γ_{11}/Γ_2 $\Gamma(pK^{-}\pi^{+}\pi^{0})/\Gamma(pK^{-}\pi^{+})$ DOCUMENT ID COMMENT TECN BESIII的贡献使得多数分支比结果由相对测量改为绝对测量。

PDG2019

- BESIII对黄金道 Λ_c^+ →pKπ的测量 ⇒ "模型依赖"变为"模型无关"。
- BESIII贡献发现了更多以前没发现的衰变道(比如含中子末态的衰变)。

Contributions to Ξ_{cc}^{++} **observation**

•LHCb observed Ξ_{cc}^{++} from $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ and $\Xi_c^+ \pi^+$ decays

Credits from theorists

- ★ $\tau(\Xi_{cc}^{++}) \approx 3 \tau(\Xi_{cc}^{+})$ (Chang, Li, Wang, Karliner, et al.)
- "Discovery channels of $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ and $\Xi_c^+ \pi^+$ was predicted benefited from BESIII Λ_c^+ measurem,ents " (FSY, Jiang, Li, Lyu, Wang, Zhao '17)

LHCD ChCp PRL 119, 112001 (2017 Cb 13 TeV

A theoretical Framework for Charmed Hadrons

- ◆ Topological diagrams + Symmetries + Experimental inputs ⇒ to understand the decaying dynamics, predicting double-charm baryon decays, CPV, etc. (Chau, Cheng('80 – '86) ⇒ predictive power)
 - A⁺_c branching fractions used for global analysis
 ⇒ Ξ⁺⁺_{cc} → Λ⁺_cK⁻π⁺π⁺ and Ξ⁺_cπ⁺ are large enough for observation.

Large enough for observation

 Λ_c^+ BFs from BESIII \Rightarrow Stronger predictive power

Some limitations for BEPCII/BESIII

- **BEPCII/BESIII** have run 10 years, and are playing a leading role in tau-charm physics area.
- Limited by length of storage ring, no space and potential for the upgrade.
- Physics study limited by the Statistics (luminosity),
 CME
- Challenged by Belle II
- **BEPCII/BESIII** will end her mission in 4 6 years (?)

A Super τ-charm Facility is the nature extension and a viable option for a post-BEPCII HEP project in China

Accelerator based project in China

Consensus in HEP community (about on accelerator based particle physics project)

http://www.ihep.cas.cn/xh/gnwlxh/zxdt/201609/t20160912_4661283.html

BEPCII vs STCF

BEPCII

Peak luminosity 0.6-1×10³³ cm⁻²s⁻¹ at 3.773 GeV

Conversion of a conversion o

I No Polarization

Designed STCF

Peak luminosity 0.5-1×10³⁵ cm⁻²s⁻¹ at 4 GeV

Energy range E_{cm} = 2–7 GeV

Single Beam Polarization (Phase II)

Benchmark Processes

CME (GeV)	Lumi (ab ⁻¹)	samples	$\sigma(nb)$	No. of Events	remark	
3.097	1	J/ψ	3400 ¹	3.4×10^{12}		
3.670	1	$\tau^+\tau^-$	2.4	2.4×10^{9}		Search for CPV in hyperons:
		ψ(3686)	640	6.4×10^{11}		
3.686	1	$\tau^+\tau^-$	2.4	2.4×10^{9}		$//\psi \rightarrow \Lambda\Lambda, \Xi^{-}\Xi^{+}$
		$\psi(3686) \to \tau^+ \tau^-$		2.0×10^{9}		
		$D^0 ar{D}^0$	3.6	3.6×10^{9}		
		$D^+ \overline{D}^-$	2.8	2.8×10^9		
3.770	1	$D^0 \overline{D}^0$		7.9×10^{8}	Single	
		$D^+\bar{D}^-$		5.5×10^{8}	Single Tag	Semi-leptonic decay of D(test LFU):
		$\tau^+\tau^-$	2.9	2.9×10^{9}		
		$\gamma D^0 \overline{D}^0$	1.3	1.3×10^{9}	$CP_{D^0\bar{D}^0} = +1^3$	$D \rightarrow \pi \mu v$
		$\pi^0 D^0 D^0$	2.7	2.7×10^{9}	$CP_{D^0\bar{D}^0} = -1$	
		$D^{*+}D^{-}+c.c$	4.0	4.0×10^9		
4.040	1	$D^{*+}D^{*-}+c.c$	2.0	2.0×10^{9}		
		$D_s^+ D_s^-$	0.20	2.0×10^{8}		I optopia doopy of D (tost I EU);
		$D_s^+ D_s^-$		2.3×10^{7}	Single Tag	Leptonic decay of D_s (lest LFO).
		$\tau^+\tau^-$	3.5	3.5×10^9		$D^+ \rightarrow \mu^+ \mu D^+ \rightarrow \tau^+ \mu$
		$\gamma D^0 D^0$	0.4	4.0×10^{8}	$CP_{D^0\bar{D}^0} = +1$	$D_S \rightarrow \mu \ o_{\mu}, D_S \rightarrow \iota \ o_{\tau}$
		$\pi^0 D^0 D^0$	0.8	$8.0 \times 10^{\circ}$	$CP_{D^0\bar{D}^0} = -1$	
4.180	1	$D^{*+}D^{-}+c.c$	1.0	1.0×10^{9}		
		$D_s^{+*}D_s^{-}+\text{c.c.}$	0.90	$9.0 \times 10^{\circ}$		Soonah for CDV in a lonton
		$D_{s}^{+*}D_{s}^{-}+\text{c.c.}$		$1.3 \times 10^{\circ}$	Single Tag	Search for CP v in t lepton:
		$\tau^{+}\tau^{-}$	3.6	3.6×10^{3}		$\tau \to V^0 \pi \mu$
		$D_s^{+*}D_s^{-*}$	0.4	$4.0 \times 10^{\circ}$		$l \rightarrow \Lambda \ h l \nu$
4.230	1	$J/\psi\pi^+\pi^-$	0.085	8.5×10^{7}		
		$\tau^+\tau^-$	3.6	3.6×10^{7}		
		$\gamma X(38/2)$	0.014	1.0×10^{7}		Search for cLFV in τ lepton:
4.360	1	$\psi(3686)\pi^{+}\pi^{-}$	0.058	5.8×10^{7}		Source for chir v in v repton.
		$\tau'\tau$	3.5	3.5×10^{7}		$\tau \rightarrow \gamma \mu \hbar \tau \rightarrow \mu \mu \mu$
4.420	1	$\psi(3686)\pi'\pi$	0.040	4.0×10^{7}		
		$\tau'\tau$	3.5	3.5×10^{7}		
4.630		$\psi(3686)\pi'\pi^-$	0.033	$3.3 \times 10^{\prime}$		
	1	$\Lambda_c \Lambda_c$	0.56	5.6×10^{3}	Circala Tra	Colling offect at high energy
		$\Lambda_c \Lambda_c$	2.4	0.4×10^{7}	Single Tag	Comms effect at mgn effergy.
4070	2	$\tau \tau$	3.4	$\frac{3.4 \times 10^{\circ}}{0 \text{ MeV} \text{ step} - 1.617}$	lasint	$\pi\pi$ inclusive KK inclusive
4.0-7.0	3	300 points	scan with I	dataila damandart	-/point	<i>untilusive</i> , MAthenusive
> 3	2-1	several ab - nigh (energy data,	details dependent	on scan results	

Highlight: Matter-Antimatter Asymmetry

CPV in K, B meson system ⇒ 1980, 2008 Nobel Prizes

2019 LHCb: CPV in D meson system! What about CPV in Baryon & Lepton system?

CPV in Hyperon Decays

- ◆ In 1958, Okubo: CPV in hyperon-antihyperon allows ⇒
 "Okubo effect"(Direct CPV) Phys. Rev. 109, 984 (1958).
- In 1959, Pais: extended Okubo's proposal to asymmetry parameters in Λ and <u>Λ</u> decays. Phys. Rev. Lett. 3, 242 (1959).
- In the '80s, a number of calculations were made. CKM predictions, CPV in Λ: 10⁻⁴ ~ 10⁻⁵
- One example: Phys. Rev. D34, 833 (1986).

PHYSICAL REVIEW D

VOLUME 34, NUMBER 3

1 AUGUST 1986

Hyperon decays and CP nonconservation

John F. Donoghue Department of Physics and Astronomy, University of Massachusetts, Amherst, Massachusetts 01003

Xiao-Gang He and Sandip Pakvasa Department of Physics and Astronomy, University of Hawaii at Manoa, Honolulu, Hawaii 96822 (Received 7 March 1986)

We study all modes of hyperon nonleptonic decay and consider the *CP*-odd observables which result. Explicit calculations are provided in the Kobayashi-Maskawa, Weinberg-Higgs, and leftright-symmetric models of *CP* nonconservation.

Spin polarization of Λ in $J/\psi \rightarrow \Lambda \overline{\Lambda}$

1.31 billion J/ ψ events Quantum correlation in Λ pair

	Parameter	s This work	Previous results
	α_{ψ}	$0.461 \pm 0.006 \pm 0.007$	0.469 ± 0.027 ¹⁴
	$\Delta \Phi$	$(42.4\pm0.6\pm0.5)^\circ$	_
	α_	$0.750 \pm 0.009 \pm 0.004$	0.642 ± 0.013 ¹⁶
٩	$lpha_+$	$-0.758 \pm 0.010 \pm 0.007$	$-0.71 \pm 0.08 ^{\rm 16}$
<u> </u>	$ar{lpha}_0$	$-0.692\pm 0.016\pm 0.006$	_
	A_{CP}	$-0.006\pm0.012\pm0.007$	$0.006 \pm 0.021 \ ^{\rm 16}$
	$ar{lpha}_0/lpha_+$	$0.913 \pm 0.028 \pm 0.012$	_
<u> </u>		CP test	
		$A_{CP} = \frac{\alpha + \alpha_+}{\alpha \alpha_+}$	18

A_{CP} Sensitivities in STCF

- +4 trillion J/ψ events \Rightarrow ΔA_{CP} ~ 10⁻⁴
 - +Luminosity optimized at J/ψ resonance
 - Luminosity of STCF: × 100
 - ♦1 2 years data taking
 - **+**No polarization beams are needed
- ♦ Beam energy trick ⇒ small beam energy spread ⇒ J/ψ cross-section: × 10 ⇒ ΔA_{CP} ~ 10⁻⁵?
- Challenge: Systematics control

Full simulation results are necessary!

Monochromatic collision

Xiaoshuai Qin

Alexander Zholents CERN SL/92-27/AP

 $A_{CP} = ?? \pm 0.012 \pm 0.003$ BESIII: 1.3 billion result

τ Highlights

CPV in τ decays

- Measurement on the angular CPV asymmetry is desirable
- Use T-odd rotationally invariant products in >=2 hadrons, such as $\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau} / \mathbf{k}^- \pi^0 \nu_{\tau}, \quad \tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_{\tau} / \mathbf{K}^- \pi^+ \pi^- \nu_{\tau} : P_2^{\tau} \cdot (\vec{P}_{\pi^+} \times \vec{P}_{\pi^0})$
- Polarized of τ and beam are necessary

• Figure of Merits

 $\begin{array}{ll} \mathrm{merit} &= \mathrm{luminosity} \times \bar{w}_Z \times \ \mathrm{total\ cross\ section} \\ &\propto \mathrm{luminosity} \times (w_1 + w_2) \\ &\times \sqrt{1 - a^2} a^2 (1 + 2a) \ , \end{array}$

Y. S. TSAI, PRD 51 (1995) 3172

BESIII @ $4.25 (10^{33} \text{cm}^{-2} \text{s}^{-1})$ FOM=1

STCF @ $4.25 (10^{35} \text{cm}^{-2} \text{s}^{-1})$ FOM=100

SuperKEKB @ (8x10³⁵cm⁻²s⁻¹) FOM=52

Experimental challenge: reconstruction of τ (No secondary vertices)

R/QCD Highlights

Baryon Form Factors

for B=p: JLAB & e⁺e⁻ are complementary Crossing symmetry:

 $\langle N(p')|j^{\mu}|N(p)\rangle \rightarrow \langle \overline{N}(p')N(p)|j^{\mu}|0\rangle$

$$J^{\mu} = \langle N(p') | j^{\mu} | N(p) \rangle = e\overline{u}(p') \left[\gamma^{\mu} F_{1}(q^{2}) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M} F_{2}(q^{2}) \right] u(p)$$

$e^+e^- \rightarrow p\overline{p}, n\overline{n}, \Lambda\overline{\Lambda}$ threshold

The threshold production of baryon pair

STCF: 100× more statistics will much enhance the understandings of these 'unexpected' threshold enhancement! (Study e⁺e⁻ $\rightarrow p\overline{p}, n\overline{n}, \Lambda\overline{\Lambda}, \Sigma\overline{\Sigma}, \Xi\overline{\Xi}, \Omega\overline{\Omega}, \Lambda_c\overline{\Lambda_c}, \Sigma_c\overline{\Sigma_c}, \Xi_c\overline{\Sigma_c}, \Xi_c\overline{\Sigma_c}, \Omega_c\overline{\Omega_c} \dots$ @threshold)

The threshold production of baryon pair

极化依赖的Collins碎裂函数测量

J. C. Collins, Nucl. Phys. B396, 161 (1993)

e+ e-Collins FF \otimes Collins FF e^+ q^* q ff h_1 e^- q ff h_2

Collins effect at BESIII

- ~62 pb ⁻¹ @3.65GeV
 - +Continuum region
- Nonzero Collins effect at BESIII
- Basically consistent with predictions from PRD 88. 034016 (2013) .
- important inputs for understanding the spin structure of the nucleon
- valuable to explore the energy evolution of the spin-dependent fragmentation function.

Global Analysis on Collins FF

Anselmino et al., PRD 87, 094019 (2013)

Using data from HERMES, COMPASS, Belle

Transversity

Collins pion

The Q² evolution of Collins FFs was assumed following the extrapolation in the unpolarized FF, and this has not been validated.

- Low Q² data from e⁺e⁻ collider is useful.
- BEPCII / STCF
 - Similar Q² coverage with SIDIS in EicC

Highlights: Spectroscopy

Charmonium-Like Physics (XYZ)

No challenge from Super KEKb/Belle II

• τ -C Factory : $e^+e^- \rightarrow Y/\psi \rightarrow Z_c^+ X$

- B factory : Total integrate effective luminosity between 4-5 GeV is 0.23ab⁻¹ for 50 ab⁻¹ data
- τ-C factory : scan in region 4-5 GeV, 10 MeV/step, every point have 20 fb⁻¹/year, 10 time of Belle II for 50 ab⁻¹ data
- τ-C factory have much higher efficiency than B Factory

• **B Factory : ISR, B decay**

Highlights on Charm Hadron?

Topological diagram framework?
Flavor physics & CPV in charm hadrons?
Any other idea?

STCF CDR status

Parameters and Plan of STCF

Parameters	Phase 1	Phase 2
Circumference/m	600-800	600-800
Optimized Beam Energy/GeV	2	2
Energy Range/GeV	1-3.5	1-3.5
Current/A	1.5	2
Emittance $(\varepsilon_x / \varepsilon_y)$ /nm·rad	5/0.05	5/0.05
β Function @ IP $(\beta_x^*/\beta_y^*)/mm$	100/0.9	67/0.6
Collision Angle(full θ)/mrad	60	60
Tune Shift ξ_y	0.06	0.08
Hour-glass Factor	0.8	0.8
Luminosity/×10 ³⁵ cm ⁻² s ⁻¹	~0.5	~1.0
Dynamic Aperture	15σ	15σ
Total Lifetime	~1800s	~1800s

Basic Features:

Large Piwinski angle collision + crabbed waist Siberia snake for polarization **Strategy**: (Phase 0) Pilot: 0.5 × 10³⁵ (Phase I) Nominal: 1.0×10^{35} (Phase II) Polarized beam **Final:** 90% Polarization einjection, 80% Polarization **@IP**

Upgrade: Polarized e+

Accelerator (Achieved Parameters)

Detector Layout and General Consideration

- Much larger radiation tolerance, especially at IP and forward regions
- Efficient event triggering, exclusive state reconstruction and tagging
- The Systematic uncertainty control
- Reasonable cost
- STCF Detector team has been formed. (Currently, USTC team is playing the leading role.)
- Lots of progress on Tracking, PID, EMC and Muon system R&D.
 - Tracking: Several Micro-Pattern Detector (DEPFET, MAPS, GEM/MicroMegas/ uRWELL) Technologies for inner tracking are testing.
 - PID: RICH/DIRC for Barrel and DIRC-like TOF for EndCap
 - EMC: CsI(Tl), CsI, BSO, PbWO4, LYSO
 - Muon Counter with precise timing (σ_T<80 ps, Space reolution ~0.6 mm)

Strategy & Activities

CDR \rightarrow **TDR** \rightarrow project application \rightarrow construction \rightarrow

commissioning

Strategy: focus on CDR (2 years) and TDD (6 years) donod

二、 讨论报告框架中第四部分内容: 我国牵头组织国际大科学的路线图

经过与会人员充分讨论,得出如下结论:

中国物理学会高能物理分会

第十届委员会常务委员会第三次会议纪要

[2019] 002

时间: 2019年3月1日

地 点: 高能所主楼 A418 会议室

主持人: 王贻芳

¢

(

¢

•

1

•

出席常委:金山、刘建北、娄辛丑、王贻芳、岳崇兴、赵强、赵政国、郑阳恒、 朱守华

特邀专家:彭海平

记 录: 邱雯

1. 大家一致同意 CEPC 项目最符合以我为主的国际大科学计划和大科学工程 战略规划条件,这也符合中国高能物理长期战略研讨所形成的发展规划,即 CEPC 是我国未来高能加速器物理发展的首选项目,应该积极争取使其成为我国 发起的国际大科学工程之一;基于以上这些考虑,本次国际大科学的培育推选 CEPC。

 大家一致同意支持 SCTF 的预研,虽然 SCTF 的建设规模要比 CEPC 小很多, 但是作为我国高能实验物理在高亮度前沿的布局,积极开展项目预研是很有必 要的,特别是该项目应该和 BEPCII 的升级改造相结合,充分挖掘其丰富的物理 内容。建议由科大和国科大联合申请科学院先导 B,或申请科技部的重点研发 计划来支持 STCF 的预研。

Regular weekly meetings for Accelerator/Detector Design!

Activities

USTC Scientific Committee Review

USTC president agreed, and scientific committee endorsed supporting $R&D \rightarrow 10$ M RMB

•

Organization

Tentative Plan & Estimated Budget

	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030- 2040	2041- 2042
Form International Collaboration														
Conception Design Report (CDR)														
Technical Design Report (TDR)														
Construction														
Commissioning														
Upgrade														

A unique precision frontier in the world for 30 years!

R&D budget: 200M RMB Total budget: 4B RMB (estimated in 2014)

单位: 亿元					
eLinac	4.0+1.0 (阻尼环)				
Electron ring	7.0				
Positron ring	7.0				
束线	1.2				
实验谱仪	8.0				
低温	1.0				
配套设施	1.8				
装置土建	6.0				
不可预见	3.0				
合计	40				

International Collaboration

- Pre-Agreement of Joint effort on R&D, details are under negotiation
- Joint workshop between China, Russia, and Europe
 - 2018 UCAS (March), Novosibirsk (May), Orsay (December)
 - 2019

Institutions shown Interest

- University of Science and Technology of China
- Institute of High Energy Physics, CAS
- Institute of Theoretical Physics, CAS
- Tsinghua University
- University of Chinese Academy of Sciences
- Shandong University
- Shanghai Jiaotong University
- Peking University
- Zhejiang University
- Nanjing University
- Nankai University
- Wuhan University
- Central China Normal University Lanzhou University
- University of Southern China
- Beijing University of Aeronautics and Astronautics
- SUN YAT-SEN UNIVERSITY
-
- Institute for Basic Science, Daejeon, Korea
- Dubna, Russia
- Budker Institute and Novosibirsk University, Russia
- T. Shevchenko National University of Kyiv, Kyiv, Ukraine
- University Ljubljana and Jozef Stefan Institute Ljubljana, Slovenia
- Jozef Stefan Institute Ljubljana, Slovenia

- Stanford University, USA
- Wayne State University, USA
- Carnegie Mellon University, USA
- GSI Darmstadt and Goethe University Frankfurt,

Germany

- Goethe University Frankfurt, Germany
- GSI Darmstadt, Germany
- Johannes Gutenberg University Mainz, Germany
- Helmholtz Institute Mainz, Germany
- LAL (IN2P3/CNRS and Paris-Sud University), Orsay, France
- Sezione di Ferrara, Italy
- L'Istituto di Fisica Nucleare di Torino, Italy
- L'Istituto di Fisica Nucleare di Firenze, Italy
- Scuola Normale Superiore, Pisa, Italy
- University of Silesia, Katowice, Poland
- Laboratori Nazionali di Frascati, Italy
- INFN, Padova, Italy
- University of Pavia, Pavia, Italy
- University of Parma, Italy

Conceptual Design Report

Candidate site 1: 广东

 Institute of Modern Physics, CAS, proposed building HIAF-EicC in Huizhou, Canton
 HIAF-EicC-I : 2027-2032

BRing1

1-3 GeV/A

C: 600 m

BRing2

3-5 GeV/A

C: 600 m

iLinac 200 MeV/A

STCF Share the design effort of the electron accelerator of EicC?

⇒QCD 国家中心?

Electron injector: SRF Linac-ring, 3.5-10GeV

A working group for EIC was established at IMP led by Dr. Nu Xu and Jianping Chen.

EicC-I

eRing

e: 3-5 GeV

Update to 45 Tm

p: 12.5GeV

SRing

MRing

HIAF-I

HIAF-II

 SUN YAT-SEN UNIVERSITY proposed building Southern Synchrotron Radiation light source in Canton

L: 1 x10³³cm⁻²s⁻¹

1-2.5 MW primary proton beam from CiADS-linac

ISOL machine

HIAF+CIADS linac

p/e, polarized

Candidate site 2: 安徽合肥

One of three integrated national science centers, which will play important role in 'Megascience' of China in near future

- Pay a lot of attention on accelerator facilities
- Hefei Advanced light source is under design
- STCF is listed in future plan

- University of Science and Technology of China (USTC)
- National Synchrotron Radiation Lab and Hefei Light Source, operated by USTC
- The only National Lab operated by University in China. (Totally Four officially approved National Labs in China)

Summary

Super τ-c Facility (STCF): nature extension and a viable option for a post-BEPCII project

Status of STCF project in China:

- **– Physics:** Rich & unique for physics with **c** quark and τ leptons.
- Detector & Electronics: Significant progress in R&D at USTC
- Accelerator: Design group is formed and working hard, progress are ongoing. More experts are needed.
- Funding: 10M RMB for initial R&D from USTC; More communication to CAS and Local governments
- An international collaboration is under preparing

Strategy & Plan

- Complete CDR in 2 years, TDR in 6 years
- Construction site: Currently open

Welcome to join the effort

Thank you!

Backup Slides

Candidate site 3: 北京怀柔

Planned Scientific City : 100.9 km² (One of three integrated national science centers)

Synchrotron radiation light source

So far, no dedicated facility for particle physics yet!

Energy scan 2014-2015 at BESIII

World leading scan from 2.0 GeV – 3.08 GeV energy region
 Nucleon and Hyperon form-factor available
 18-11-27 李海波

Rich Physics programs @ STCF

Unique for physics with c quark and τ leptons, important playground for study of QCD, exotic hadrons and search for new physics.

- Charmonium & Chramonium-like XYZ (Luminosity & CME)
- Charmed hadrons (Luminosity & CME)
- τ Lepton CP (Luminosity & polarized beam)
- New physics (Luminosity)
- R / QCD (Luminosity & CME)
- ...

More information can be found in Bingsong Zou's "Physics

- Summary of STCF", presented at Joint Workshop of future
- tau-charm factory, December 2018.

cLFV Decay $\tau \rightarrow \mu \gamma$

- Charge Lepton Flavor Violation $\tau \rightarrow \gamma \mu$
 - New physics beyond SM, constraint many modes.
 - Current limit: 4.4×10⁻⁸ at Babar with 0.9×10⁹ τ pairs
- Cross section grows from 0.1 nb near threshold to 3.5 nb to 4.25 GeV.
 - At Bellell:
 - $10^{10} \tau$ pairs/year
 - ISR background dominant: $e+e- \rightarrow \gamma \tau + \tau -$
 - Expected limit: 3×10⁻⁹@50 ab⁻¹
 - At STCF:
 - 7.0×10⁹ τ pairs/year at 4.25 GeV
 - $e+e- \rightarrow \gamma \tau + \tau -$ background not contribute at 4.25 GeV.
 - Dominant background: $\gamma \mu + \mu -$, $\tau \rightarrow \pi v$
 - 4.4×10⁻⁸ @ 6.34 ab ⁻¹ estimated at BESIII
 - Much lower $\mu l \pi$ misID rate is needed
 - Fast simulation on this process is progressing

Does not contribute below $\sqrt{s} \approx 4m_{\tau}/\sqrt{3} \approx 4.1$ GeV. ₅₅

Integrated Luminosity of STCF

• Assume running time 9 months/year, data taking efficiency 90%

 10^{35} cm⁻²s⁻¹ × 86400s × 270 days × 90% ~ **2.0ab⁻¹/year**

10 years data taking, total 20 ab⁻¹ conservatively

Excellent opportunities for the τ -charm physics

- B factory: Total integrated effective luminosity between 2-7 GeV is ~1.5ab⁻¹ for 50 ab⁻¹ data.
- **STCF** is expected to have higher detection efficiency
 - e.g. @4.26 GeV for $\pi^{+}\pi^{-}J/\psi$, $\varepsilon_{\text{BESIII}} = 46\%$, $\varepsilon_{\text{Belle}} = 10\%$
- **STCF** has low backgrounds for productions at threshold.

5

Λ

 $\frac{\alpha_{\mathbf{1}}}{d\cos\theta_{\Lambda}d\Omega_{1}} \propto \left(1 + \boldsymbol{\alpha}_{\boldsymbol{\psi}}\cos^{2}\theta_{\Lambda}\right) \left\{1 + \boldsymbol{\alpha}_{\mathbf{1}}P_{\Lambda}(\theta_{\Lambda})\sin\theta_{1}\sin\phi_{1}\right\}$

p

 θ_{Λ}

 e^+

 $1 + \alpha_n n_y P_y$

 $\Lambda \rightarrow p\pi^{-}: \Omega_{1} = (\cos \theta_{1}, \phi_{1}) : \alpha_{1} \rightarrow \alpha_{-}$

Λ

 e^{-}

Göran Fäldt, AK PLB772 (2017) 16

$$d\sigma \propto W(\boldsymbol{\xi}) \ d\cos\theta \ d\Omega_1 d\Omega_2$$

$$\Lambda \rightarrow p\pi^-: \ \Omega_1 = (\cos\theta_1, \phi_1) \qquad \alpha_- = \alpha_1$$

$$\overline{\Lambda} \rightarrow \overline{p}\pi^+: \ \Omega_2 = (\cos\theta_2, \phi_2) \qquad \alpha_+ = \alpha_2$$

$$\boldsymbol{\xi} : (\cos\theta, \Omega_1, \Omega_2)$$

$$W(\boldsymbol{\xi}) = 1 + \boldsymbol{\alpha_{\psi}} \cos^2\theta \qquad \text{Spin correlations}$$

+
$$\alpha_1 \alpha_2 \left(\mathcal{T}_1(\boldsymbol{\xi}) + \sqrt{1 - \alpha_{\psi}^2} \cos(\boldsymbol{\Delta \Phi}) \mathcal{T}_2(\boldsymbol{\xi}) + \alpha_{\psi} \mathcal{T}_6(\boldsymbol{\xi}) \right)$$

 $+\sqrt{1-\boldsymbol{\alpha}_{\psi}^{2}\sin(\boldsymbol{\Delta}\boldsymbol{\Phi})}\sin\theta\cos\theta\left(\boldsymbol{\alpha}_{1}\sin\theta_{1}\sin\phi_{1}+\boldsymbol{\alpha}_{2}\sin\theta_{2}\sin\phi_{2}\right)}$ 57

Observation of the spin polarization of Λ hyperons in the $J/\psi \to \Lambda \overline{\Lambda}$ decay

Time-Like Baryon Form Factors

Fundamental properties of the baryon
 QCD predictions:

At large q², absolute value of FF(q²)=FF(-q²)

Experiment: time-like FF much larger than space-like FF

◆ Squared ratio of n/p form factors ≈ 0.25

Problem: only very poor data for neutron form factor

At present, the anomalous magnetic moment of the muon $a_{\mu} = (g - 2)_{\mu}/2$ are known with an uncertainty of about one half per million!

Impact on $(g_u-2)/2$

High Luminosity of STCF will largely improve the SM precisions

e⁺e⁻ → Baryon-Antibaryon Pair

Born cross section:

$$e^{+}e^{-} \leftrightarrow N\overline{N}, \Lambda\overline{\Lambda}, \dots$$

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^{2}\beta C}{4m_{B\overline{B}}^{2}} \left[(1 + \cos^{2}\theta) |G_{M}(m_{B\overline{B}})|^{2} + \frac{1}{\tau} \sin^{2}\theta |G_{E}(m_{B\overline{B}})|^{2} \right]$$

$$\tau = \frac{m_{B\overline{B}}^{2}}{4M_{B}^{2}} \quad \beta = \sqrt{1 - \frac{1}{\tau}}$$
Coulomb enhancement factor
$$C_{\text{charged}} = \frac{\pi\alpha / \beta}{1 - \exp(-\pi\alpha / \beta)} \frac{(\beta \to 0)}{\pi\alpha / \beta}$$

$$C_{\text{neutral}} = 1$$
in point-like approx
integrated
cross section:
$$\sigma_{B\overline{B}} \left[|G_{M}(m_{B\overline{B}})|^{2} + \frac{1}{2\tau} |G_{E}(m_{B\overline{B}})|^{2} \right] = \frac{4\pi\alpha^{2}\beta C}{3m^{2}} |G_{R\overline{B}}(m_{B\overline{B}})|^{2} (1 + 1/2\tau)$$
"effective" form factor

effective form factor:

$$\left|G_{eff}\right|^{2} = \frac{\left|G_{M}\right|^{2} + \frac{1}{2\tau}\left|G_{E}\right|^{2}}{1 + \frac{1}{2\tau}}\sigma_{B\bar{B}}\left(m_{B\bar{B}}\right) \implies \left|G_{eff}\right| = \left(\frac{3m_{B\bar{B}}^{2}}{\pi\alpha^{2}\beta C\left(1 + \frac{1}{2\tau}\right)}\right)^{\frac{1}{2}}\sqrt{\sigma_{B\bar{B}}}$$

analyticity: $G_{M}(4M_{B}^{2}) = G_{E}(4M_{B}^{2}) \implies G_{eff}(4M_{B}^{2}) = G_{M}(4M_{B}^{2})$

Selected Highlight topics

Time-like Form factors of Baryon pair Collins Fragmentation functions; **MLLA/LPHP prediction** Polarization & CPV of Hyperon $(g_{\mu} - 2)/2, 92\%$ from < 2GeV, 7% from 2-5GeV

Collins Fragmentation Function(FF)

D. Boer Nucl.Phys.B806:23(2009):

$$e^+ e^- \rightarrow q \overline{q} \rightarrow \pi_1^{\pm} \pi_2^{\mp} X$$

P. Sun, F. Yuan, PRD 88. 034016 (2013) Predicted Collins asymmetries for BESIII :

Experimentally

Double Ratio to cancel detection effects

Unlike-sign $(\pi^{\pm}\pi^{\mp})$; Like-sign $(\pi^{\pm}\pi^{\pm})$

Charged:
$$(\pi\pi)$$

$$A_{UL(C)} = \frac{R^U}{R^{L(C)}} = A\cos(2\phi) + B$$

Integral Luminosity of STCF

- No Synchrotron radiation mode, assume running time 9 months/year
- Assume data taking efficiency 90%

 10^{35} cm⁻²s⁻¹ × 86400s × 270 days × 90% ~ 2.0ab⁻¹/year 10 years data taking, total 20 ab⁻¹ conservatively Excellent opportunities for the τ -charm physics

BELLE-II

- each 1 ab^{-1} dataset provides
 - $\sim 1.1 \times 10^9 \ B\bar{B} \Rightarrow$ a B-factory;
 - $\sim 1.3 \times 10^9 \ c\bar{c} \Rightarrow$ a charm factory;
 - $\sim 0.9 imes 10^9 \ au^+ au^ \Rightarrow$ a au factory;
 - wide $E_{CM}^{eff.}$ =[0.5-10] GeV via ISR.

Native question : Compete between STCF and BELLE-II ?

Data samples

Data samples with 1 ab⁻¹ integral luminosity

			Belle II					
Data Set	process	$\sigma/{\rm nb}$	N	ST eff./ $\%$	ST N	$\sigma/{\rm nb}$	N	Tag N
J/ψ	_	_	1.0×10^{12}	_	_	_	_	_
$\psi(2S)$	_	_	3.0×10^{11}	_	_	_	_	_
D^0	$D^0 \bar{D^0}(3.77)$	~ 3.6	3.6×10^9	10.8	0.78×10^9	_	$1.4 imes 10^9$	_
D^+	$D^+D^-(3.77)$	~ 2.8	2.8×10^9	9.4	0.53×10^9	_	7.7×10^8	_
D_s	$D_s D_s^*(4.18)$	~ 0.9	$0.9 imes 10^9$	6.0	0.11×10^9	_	2.5×10^8	_
_+	$\tau^{+}\tau^{-}(3.68)$	~ 2.4	2.4×10^9	_	_	0.9	0.9×10^9	_
au :	$\tau^{+}\tau^{-}(4.25)$	~ 3.6	3.5×10^9	_	_	_	_	_
Λ_c	$\Lambda_c \Lambda_c (4.64)$	~ 0.6	5.5×10^8	5.0	0.55×10^8	—	1.6×10^{8}	$3.6 \times 10^{4*}$

* process
$$e^+e^- \to D^{(*)-}\bar{p}\pi^+\Lambda_c^+$$
.

- **STCF** have more yields /per luminosity
- **STCF** is expected to have higher detection efficiency
- Belle II can have larger integral luminosity

Detail simulations are ongoing to study the potential for the physics research.

R and QCD Physics

Detailed study of exclusive processes $e^+e^-\rightarrow(2-10)h$, $h=\pi,K,\eta$, p... Scan between 2-7GeV and ISR $\sqrt{s}<2GeV$

- Meson Spectroscopy
- Intermediate dynamics
- Search for exotic states (tetraquarks, hybrids, glueballs)
- Form factors

High precision determination of R= $\sigma(e^+e^-\rightarrow hadrons)/\sigma(e^+e^-\rightarrow \mu^+\mu^-)$ at low energies and fundamental quantities

- (g_µ-2)/2, 92% from < 2GeV, 7% from 2-5GeV
- $\alpha (M_z)$, 19.0% from < 2GeV, 18.1% from 2-5GeV
- QCD parameters (charm quark masses)

Inclusive cross section $e^+ e^- \rightarrow h + X$

- QCD parameters (α_s , quark and gluon condensates)
- Fragmentation functions; MLLA/LPHP prediction
- Spin alignment of vector

Two photon Physics

- Measurement of $\Gamma_{\gamma\gamma}$ for $J^{PC} = 0^{-+}, 0^{++}, 2^{-+}, 2^{++}$ states
- Study of $\gamma\gamma^* \rightarrow R$, $R = 1^{++}$
- Transition Form Factors in $\gamma^* \gamma^* \rightarrow \mathbf{R}$
- Cross section of $\gamma\gamma$ \rightarrow hadrons

Key Technologies

Polarization

- Spin Polarized Electron Source
- Polarization Rotation and Maintenance for Rings and Final Focus

RF

Superconducting Cavities, Deflecting Cavities, Higher Harmonic Cavities, etc.

Magnets

 High Quality Magnets with high strength, Superconducting Magnets and Solenoids

Diagnostics and Control

 Low Emittance Measurement, Transverse and Longitudinal Feedback, etc.

Collaboration Needed

Accelerator Physics

- > IR Design
- Polarization: Spin Rotation and Maintenance
- Collective Effects: Simulation and Bench Measurements
- Advanced Computational Accelerator Physics

Accelerator Technologies

- Superconducting Cavities and Magnets
- Polarized Beam Sources
- Ultrahigh Vacuum Chamber with Small Aperture,
 Optimized Impedance and Low SEE