

理论与实验联合研讨会: 粲物理" 专题研讨会 2019.11.22-24, 暨南大学

Recent results of charmed baryons at LHCb

杨振伟 清华大学高能物理研究中心 2019.11.23

Outline

- Introduction
- Singly charmed baryons
- Doubly charmed baryons
- Prospects and summary

The LHCb experiment

Origin of LHCb: 1995

LHC-B

CERN/LHCC 95-5 LHCC/ I 8 25 August 1995

Last update 28 March 1996

LETTER OF INTENT

A Dedicated LHC Collider Beauty Experiment for Precision Measurements of CP-Violation

Abstract

The LHC-B Collaboration proposes to build a forward collider detector dedicated to the study of CP violation and other rare phenomena in the decays of Beauty particles. The forward geometry results in an average 80 GeV momentum of reconstructed B-mesons and, with multiple, efficient and redundant triggers, yields large event samples. B-hadron decay products are efficiently identified by Ring-Imaging Cerenkov Counters, rendering a wide range of multiparticle final states accessible and providing precise measurements of all angles, α,β and γ of the unitarity triangle. The LHC-B microvertex detector capabilities facilitate multi-vertex event reconstruction and proper-time measurements with an expected few-percent uncertainty, permitting measurements of B_s-mixing well beyond the largest conceivable values of x_s . LHC-B would be fully operational at the startup of LHC and requires only a modest luminosity to reveal its full performance potential.

CKM matrix (quark-mixing matrix) & the unitarity triangles

to these two columns

Apply unitarity constraint

... dedicated to the study of CPV and other rare phenomena in the decays of Beauty particles.

... precise measurements of the CKM angles ...

2019/11/23

(1, 0)

Physics at LHCb (now)

JINST 3 (2008) S08005 The LHCb detector Int. J. Mod. Phys. A 30 (2015) 1530022 SPD/PS HCAL M3 M3 M3 У **Collision Pseudorapidity coverage** 5mpoint Magnet $2 < \eta < 5$ Beam1 Beam2 **VELO** silicon strips LHCb MC - 5m √s = 8 TeV 5m 10m 15m20m Vertex: $\sigma_{\rm IP}=20~\mu{\rm m}$ θ**, [rad]** $\sigma_{\tau} = 45 \text{ fs}$ for $B_s^0 \rightarrow J/\psi \phi$ or $D_s^+ \pi^-$ Time: **Momentum:** $\Delta p/p = 0.4 \sim 0.6\% (5 - 100 \, \text{GeV}/c)$ θ**₁ [rad]** $\sigma_m = 8 \text{ MeV}/c^2$ for $B \rightarrow J/\psi X$ (constrainted $m_{J/\psi}$) Mass : A detector at the collider $\varepsilon(K \to K) \sim 95\%$ mis-ID $\varepsilon(\pi \to K) \sim 5\%$ Hadron ID: $\varepsilon(\mu \rightarrow \mu) \sim 97\%$ mis-ID $\varepsilon(\pi \rightarrow \mu) \sim 1 - 3\%$ which looks like one for Muon ID: $\Delta E/E = 1 \oplus 10\%/\sqrt{E \text{ (GeV)}}$ fixed-target experiment **ECAL:**

• Efficient muon system

https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbPlots2016 https://twiki.cern.ch/twiki/bin/view/LHCb/ConferencePlots

杨振伟,清华大学高能物理研究中心

scale in a

LHCb Preliminary

EVT: 49700980 RUN: 70684 TV

Data taking (run1+run2)

A huge amount of $b\overline{b}$ and $c\overline{c}$ have been produced

• ~ $10^{12} b\overline{b}$

$$\sim 10^{13} c\bar{c}$$

Many impressive results have been achieved

> More than 9 fb⁻¹ accumulated in Run1+Run2

Large $b\overline{b}$ ($c\overline{c}$) cross-sections at the LHC

 $\sigma(b\overline{b}X) \sim 0.2\% \times \sigma_{pp}^{\text{inesl}},$ ~10¹¹ b-hadrons per fb⁻¹ $\sigma(c\overline{c}X) \sim 4\% \times \sigma_{pp}^{\text{inesl}},$ ~10¹² c-hadrons per fb⁻¹

All species of heavy flavour hadrons: $D^0 D^0 D^+ D^+ 4^0$

$$B^{\circ}, B^{\circ}, B^{\pm}, B^{\pm}, \Lambda_{c}^{\pm}, \Lambda_{b}^{\pm}, \\ D^{0}, D^{\pm}, D^{\pm}_{s}, \Lambda_{c}^{\pm}, \Xi_{cc}^{++}, P_{c}^{+}, \\ J/\psi, \psi(2S), \\ \Upsilon(nS), \dots \qquad A huge charm fact$$

J

Reconstruct heavy flavour decays at LHCb

~200 prompt tracks in acceptance

Detached tracks

Charmed baryons at LHCb

- Prompt production
 - Large cross-section → Large sample size
 - Background level usually high

- From b-hadron decays
 - Sample size relatively small
 - Background level relatively low

Singly charmed baryon

Lifetimes of charmed baryons

- > Known much less precisely than lifetimes of charmed mesons
- Test of HQE in particular on higher-order terms
- Expected lifetime hierarchy

$$\tau(\Xi_c^+) > \tau(\Lambda_c^+) > \tau(\Xi_c^0) > \tau(\Omega_c^0)$$

- Consistent with measurements by previous experiments
- > LHCb can significantly improve these measurements

Charmed baryon	Lifetime [fs]	
Ξ_c^+	442 ± 26	
Λ_c^+	200 ± 6	PDG2018
Ξ_c^0	112^{+13}_{-10}	
\varOmega^0_c	69 ± 12	

Measurement of the Ω_c^0 lifetime

PRL 121 (2018) 092003

Measurement of the Ω_c^0 lifetime

- > Data sample: Run1 (3 fb^{-1})
- $\succ \Omega_c^0$ from semileptonic decay $\Omega_b^- \to \Omega_c^0 \mu^- \bar{\nu}_\mu X$
 - $\Omega_c^0 \to p K^- K^- \pi^+$ decays used to reconstruct Ω_c^0
- > 10 times larger signal yield (978 \pm 60) compared to previous experiments
- > D⁺ from B → D⁺(K⁻π⁺π⁺)μ⁻ν_μX used for reference, measuring the lifetime ratio $r_{\Omega_c^0} \equiv \tau_{\Omega_c^0}/\tau_{D^+}$ to reduce systematic uncertainties
- > Result incompatible with the PDG value (69 fs)

$$\frac{\tau(\Omega_c^0)}{\tau(D^+)} = 0.258 \pm 0.023 \pm 0.010 \quad \Rightarrow \quad \tau(\Omega_c^0) = 268 \pm 24 \pm 10 \pm 2 \text{ fs}$$

► New charmed baryon lifetime hierarchy $\tau(\Xi_c^+) > \tau(\Omega_c^0) > \tau(\Lambda_c^+) > \tau(\Xi_c^0)$

Measurement of the Λ_c^+ , Ξ_c^+ and Ξ_c^0 lifetimes

PRL 121 (2018) 092003

Λ_c^+ , Ξ_c^+ and Ξ_c^0 lifetimes: strategy

- > Same strategy as Ω_c^0 lifetime measurement
- Data sample: Run1 + Run2
- $> H_c$ from semileptonic decay $H_b \to H_c \mu^- \bar{\nu}_{\mu} X$
 - $H_c \equiv \Lambda_c^+$, Ξ_c^+ or Ξ_c^0
 - $H_b \equiv \Lambda_b^0, \Xi_b^0 \text{ or } \Xi_b^-$
- > D⁺ from B → D⁺(K⁻π⁺π⁺)μ⁻ν_μX used for reference, measuring the lifetime ratio $r_{\Omega_c^0} \equiv \tau_{\Omega_c^0}/\tau_{D^+}$ to reduce systematic uncertainties

PRD 100 (2019) 032001

 $\Lambda_b^0 \to \Lambda_c^+ \mu^- \bar{\nu}_\mu X$ $-\Lambda_c^+ \rightarrow p K^- \pi^+$ $\Xi_b^0 \to \Xi_c^+ \mu^- \bar{\nu}_\mu X$ $-\Xi_c^+ \rightarrow p K^- \pi^+$ $\Xi_b^- \to \Xi_c^0 \mu^- \bar{\nu}_\mu X$ $-\Xi_c^0 \rightarrow p K^- K^- \pi^+$

Λ_c^+ , Ξ_c^+ and Ξ_c^0 lifetime: mass fits

- Signal: sum of two Gaussian
- Background: exponential
- > Much larger signal yields than previous measurements

Λ_c^+ , Ξ_c^+ and Ξ_c^0 lifetime: decay time fits

 $\begin{aligned} r_{A_c^+} &= 0.1956 \pm 0.0010 \pm 0.0013 \\ r_{\Xi_c^+} &= 0.4392 \pm 0.0034 \pm 0.0028 \\ r_{\Xi_c^0} &= 0.1485 \pm 0.0017 \pm 0.0016 \end{aligned}$

$$\begin{aligned} \tau_{A_c^+} &= 203.5 \pm 1.0 \pm 1.3 \pm 1.4 \text{ fs} \\ \tau_{\Xi_c^+} &= 456.8 \pm 3.5 \pm 2.9 \pm 3.1 \text{ fs} \\ \tau_{\Xi_c^0} &= 154.5 \pm 1.7 \pm 1.6 \pm 1.0 \text{ fs} \end{aligned}$$

Λ_c^+ , Ξ_c^+ and Ξ_c^0 lifetime: decay time fits

Baryon	Lifetime [fs] (old)	Lifetime [fs] (new)
Ξ_c^+	442 ± 26	$456.8 \pm 3.5 \pm 2.9 \pm 3.1$
Λ_c^+	$200\pm~6$	$203.5 \pm 1.0 \pm 1.3 \pm 1.4$
Ξ_c^0	112^{+13}_{-10}	$154.5 \pm 1.7 \pm 1.6 \pm 1.0$
$arOmega_c^0$	69 ± 12	$\textbf{268} \pm \textbf{24} \pm \textbf{10} \pm \textbf{2}$

- → 3-4x smaller uncertainties for $\tau_{A_c^+}, \tau_{\Xi_c^+}, \tau_{\Xi_c^0}$ than previous world average
- > $\tau_{\Xi_c^0}$ is 3.3 σ larger than previous world average
- > $\tau_{\Omega_c^0}$ is 6.9 σ larger than previous world average

$$\tau(\Xi_c^+) > \tau(\Lambda_c^+) > \tau(\Xi_c^0) > \tau(\Omega_c^0)$$
$$\tau(\Xi_c^+) > \tau(\Omega_c^0) > \tau(\Lambda_c^+) > \tau(\Xi_c^0)$$

Observation of excited Ω_c^0 baryons

PRL 121 (2018) 092003

Five narrow excited Ω_c^0 states all at once

PRL118(2017)182001

+ an evidence for 6th broad state at high mass

Resonance	Mass (M	MeV)	Γ (MeV)	$N_{\sigma} = \sqrt{\Delta \chi^2}$
$\Omega_{c}(3000)^{0}$	3000.4 ± 0.2	$\pm 0.1^{+0.3}_{-0.5}$	$4.5 \pm 0.6 \pm 0.6$	3 20.4
$\Omega_{c}(3050)^{0}$	3050.2 ± 0.1	$\pm 0.1^{+0.3}_{-0.5}$	$0.8 \pm 0.2 \pm 0.2$	1 20.4
		<	$< 1.2 \mathrm{MeV}, 95\%$	CL
$\Omega_{c}(3066)^{0}$	3065.6 ± 0.1	$\pm 0.3^{+0.3}_{-0.5}$	$3.5 \pm 0.4 \pm 0.4$	2 23.9
$\Omega_{c}(3090)^{0}$	3090.2 ± 0.3	$\pm 0.5^{+0.3}_{-0.5}$	$8.7 \pm 1.0 \pm 0.0$	8 21.1
$\Omega_{c}(3119)^{0}$	3119.1 ± 0.3	$\pm 0.9^{+0.3}_{-0.5}$	$1.1 \pm 0.8 \pm 0.1$	4 10.4
		<	$< 2.6 \mathrm{MeV}, 95\%$	CL
$\Omega_{c}(3188)^{0}$	3188 ± 5	± 13	$60 \pm 15 \pm 12$	6.4
35 30 25 20 15 10 5 5		Belle, F		
0	3 3.05	3.1 3. M(Ξ⁺K) (Ge	15 3.2 V/c^2	3.25 3.3

New excited Ω_c^0 states in $\Xi_c^+ K^-$

➢Not clear which state is which

Spin and parity need to be determined

杨振伟,清华大学高能物理研究中心

Doubly charmed baryons

Theoretical calculations of \mathcal{Z}_{cc}

Many models calculated the masses

- $m(\Xi_{cc}^{+,++}) \in (3.5, 3.7) \text{ GeV}, \ m(\Omega_{cc}^{+}) \approx m(\Xi_{cc}) + 0.1 \text{ GeV}$
- Mass splitting between Ξ_{cc}^+ and Ξ_{cc}^{++} : a few MeV

 $M(\Xi_{cc}) \approx 3.6 \text{ GeV}, \quad M(\Omega_{cc}^+) \approx 3.7 \text{ GeV}$

> Lifetime: $\tau(\Xi_{cc}^{++}) \gg \tau(\Xi_{cc}^{+})$

- $\tau(\Xi_{cc}^{++}) \in (200 700)$ fs
- $\tau(\Xi_{cc}^+) \in (50-250)$ fs

HQET: two charm quarks considered as a heavy diquark, doubly heavy baryon similar to a heavy meson Qq

Experimental efforts: SELEX

- >SELEX (Fermilab E781) collides high energy hyperon beams (Σ^- , p) with targets, dedicated to study charm baryons
- \succ Observed \mathcal{Z}_{cc}^+ in $\mathcal{Z}_{cc}^+ o \Lambda_c^+ K^- \pi^+$ ($N_s = 15.9$) and $\mathcal{Z}_{cc}^+ o pD^+K^-$ ($N_s = 5.62$) decays

• Mass (combined): $3518.7 \pm 1.7 \text{ MeV}/c^2$

Some significant puzzles of SELEX results

- Too short lifetime: $\tau(\Xi_{cc}^+) < 33$ fs @90% CL, but not zero
- Too large production: $R = \frac{\sigma(\Xi_{cc}^+) \times \mathcal{B}(\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+)}{\sigma(\Lambda_c^+)} \sim 20\%$
- Mass lower than expected

No evidence observed by FOCUS, BaBar, Belle, and LHCb

Observation of $\mathcal{Z}_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$

PRL 119 (2017) 112001

- Suggested by theorists [Yu et al., Chin.Phys.C 42 (2018) 051001]
- > Significant structure around 3620 MeV/ c^2 in the 2016 data (> 12 σ)

> Confirmed in the 2012 data (> 7σ)

 $m = 3621.80 \pm 0.72 \text{ MeV}/c^2$ $\sigma = 6.63 \pm 0.82 \text{ MeV}/c^2$

Zhenwei Yang, Center for High Energy Physics, Tsinghua

Comparison with SELEX

PRL119(2017)112001

- Large mass difference, inconsistent with being isospin partners: $\Delta m = 103 \pm 2 \text{ MeV/c}^2$
- ➢ Production: $N(\Xi_{cc})/N(\Lambda_c^+)$ much smaller in the LHCb result than that in SELEX

Measurement of the Ξ_{cc}^{++} lifetime

> Use the same sample as the observation of Ξ_{cc}^{++} → $\Lambda_c^+ K^- \pi^+ \pi^+$ > The Λ_b^0 → $\Lambda_c^+ \pi^- \pi^+ \pi^-$ decay used as reference

 $au_{\Xi_{cc}^{++}} = 256_{-22}^{+24} \pm 14 \text{ fs}$

Confirmed it is the weakly decaying ground state

Source	Uncertainty (ps)
Signal and background mass models	0.005
Correlation of mass and decay-time	0.004
Binning	0.001
Data-simulation differences	0.004
Resonant structure of decays	0.011
Hardware trigger threshold	0.002
Simulated Ξ_{cc}^{++} lifetime	0.002
Λ_b^0 lifetime uncertainty	0.001
Sum in quadrature	0.014

$$f_{\Xi_{cc}^{++}}(t) = f_{\Lambda_b^0}(t) \times \frac{\epsilon_{\Xi_{cc}^{++}}}{\epsilon_{\Lambda_b^0}} \times e^{-\left(\frac{t}{\tau_{\Xi_{cc}^{++}}} - \frac{t}{\tau_{\Lambda_b^0}}\right)}$$

Measurement of \mathcal{Z}_{cc}^{++} production

arXiv:1910.11316 Submitted to Chin.Phys.C

- ➢ Data sample: 2016 (1.7 fb⁻¹)
- Selections almost the same as those used in the observation
- > Relative to Λ_c^+ production

$$R \equiv \frac{\sigma(\Xi_{cc}^{++}) \times \mathcal{B}(\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+)}{\sigma(\Lambda_c^+)}$$

Three lifetime hypotheses used

		$R \; [10^{-4}]$	
Category	$\tau_{\Xi_{cc}^{++}} = 0.230 \text{ ps}$	$\tau_{\Xi_{cc}^{++}} = 0.256 \text{ ps}$	$\tau_{\Xi_{cc}^{++}} = 0.284 \text{ ps}$
TOS	$2.90 \pm 0.57 \pm 0.49$	$2.57 \pm 0.51 \pm 0.43$	$2.31 \pm 0.46 \pm 0.39$
exTIS	$2.41\ \pm 0.35\ \pm 0.34$	$2.11\pm 0.31\pm 0.30$	$1.88\pm 0.27\pm 0.27$
Combined	$2.53 \pm 0.30 \pm 0.33$	$2.22 \pm 0.27 \pm 0.29$	$1.98 \pm 0.23 \pm 0.26$

PRL 121 (2018) 162002

Observation of $\mathcal{Z}_{cc}^{++} \rightarrow \mathcal{Z}_{c}^{+}\pi^{+}$

- Another decay possibly with large BR suggested by theorists [Yu et al., Chin.Phys.C 42 (2018) 051001]
- > Significance: 5.9σ
- > Mass and resolution consistent with those of the $\Lambda_c^+ K^- \pi^+ \pi^+$ channel

С

u

 Ξ_{cc}^{++}

С

U

Results of $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+}\pi^{+}$

$\succ \text{Branching fraction ratio} \\ \mathcal{R} = \frac{\mathcal{B}(\mathcal{Z}_{cc}^{++} \to \mathcal{Z}_{c}^{+}\pi^{+}; \mathcal{Z}_{c}^{+} \to pK^{-}\pi^{+})}{\mathcal{B}(\mathcal{Z}_{cc}^{++} \to \Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+}; \Lambda_{c}^{+} \to pK^{-}\pi^{+})} = (3.5 \pm 0.9 \pm 0.3) \times 10^{-2}$

- Consistent with predictions [Yu et al., Chin.Phys.C 42 (2018) 051001]
- Mass and resolution consistent between the two channels
 - Combined mass: 3621.24 ± 0.65 ± 0.31 MeV/c²

> Mass difference between the LHCb \mathcal{Z}_{cc}^{++} and the SELEX \mathcal{Z}_{cc}^{+}

- $m(\Xi_{cc}^{++})_{LHCb} m(\Xi_{cc}^{+})_{SELEX} = 103 \pm 2 \text{ MeV}/c^2$
- They could not be isospin partners

 Ξ_{cc}^{++} mass measurement

arXiv:1911.08594 Submitted to JHEP

\succ Data sample: 2016-2018 (5.6 fb⁻¹)

 \succ Decay mode $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ and $\Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^+$ used

杨振伟,清华大学高能物理研究中心

Ξ_{cc}^{++} mass measurement: results

arXiv:1911.08594 Submitted to JHEP

$$m(\Xi_{cc}^{++}) = 3621.55 \pm 0.23 \,(\text{stat}) \pm 0.30 \,(\text{syst}) \,\text{MeV}/c^2.$$

Previous result: $3621.24 \pm 0.65 \pm 0.31 \text{ MeV}/c^2$

Results of $\Xi_{cc}^{++} \rightarrow D^+ p K^- \pi^+$

JHEP 10 (2019) 124

- > Helpful to further understand the dynamics of Ξ_{cc}^{++}
 - Efficient D⁺ trigger at LHCb
 - Low branching fraction (and also low background) due to small phase space
- No signal observed
 - Relative branching fraction measured

$$\mathcal{R} = \frac{\mathcal{B}(\Xi_{cc}^{++} \to D^+ p K^- \pi^+)}{\mathcal{B}(\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+)}$$

$$\mathcal{R} < 1.7 \ (2.1) \times 10^{-2} \text{ at } 90\% \ (95\%) \text{ CL}$$

▶ 2009年开始寻找

- ·2013年发表首次结果,未发现信号 (2011数据)
- ·2019年更新 (全部数据)

Prospects

LHCb Upgrade (2019-2020)

[LHCB-TDR-017]

CERN-LHCC-2012-007

> Increase luminosity to $2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

- 5 times larger than current maximum instantaneous luminosity
- All sub-detectors read out at 40 MHz for a full software trigger
 - Record with 10 GB/s
- All subdetector apart from muon and calorimeter systems will be fully replaced

Scintillating Fibre (SciFi) tracker installation

Scintillating Fibre (SciFi) tracker installation

LHCb Upgrade 2

- Upgrade 2 proposed to take full profit of HL-LHC
 - $\mathcal{L} = 1 2 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$, 10 times larger than Upgrade 1
 - Aiming at 300 fb^{-1} after Run5

- Consolidate in LS3
 Major upgrade in LS4⁴
- EOI submitted in 2017 (CERN-LHCC-2017-003)
 Physics document submitted in 2018 (arXiv:1808.08865)

Physics case: hadron spectroscopy

- \succ Much more *b* and *c*-hadrons would be produced with the Upgrade
- More precision measurements for SM tests and NP searches with heavy flavour, CKM, CPV, RD, spectroscopy,...

杨振伟,清华大学高能物理研究中心

- Observation of new states
- Double heavy flavour production, e.g. $\Upsilon(nS) + \Upsilon(nS)$
- Detailed studies of $\chi_c \rightarrow J/\psi \mu^+ \mu^-$

		LHCb		Belle II
Decay mode	$23\mathrm{fb}^{-1}$	$50\mathrm{fb}^{-1}$	$300\mathrm{fb}^{-1}$	$50\mathrm{ab}^{-1}$
$B^+ \to X(3872) (\to J/\psi \pi^+ \pi^-) K^+$	14k	30k	180k	11k
$B^+ \rightarrow X(3872) (\rightarrow \psi(2S)\gamma) K^+$	500	1k	$7\mathrm{k}$	4k
$B^0 \rightarrow \psi(2S) K^- \pi^+$	340k	700k	4M	140k
$B_c^+ \to D_s^+ D^0 \overline{D}{}^0$	10	20	100	
$\Lambda_b^0 ightarrow J/\psi p K^-$	340k	700k	4M	
$\Xi_b^- \to J/\psi \Lambda K^-$	4k	10k	55k	
$\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$	7k	15k	90k	<6k
$\Xi_{bc}^+ \to J/\psi \Xi_c^+$	50	100	600	

Physics cases: RD and CPV

arXiv:1808.08865

±10.0	±2.6	±90	LHCb	$\pm 33.0 \times 10^{-4}$	±5.4	±49	$\pm 28.0 \times 10^{-5}$	LHCb
			Current					Current
±3.6	±0.50		Belle II ATLAS/CMS		±1.5		$\pm 35.0 \times 10^{-5}$	ATLAS/CMS
±2.2	±0.72	±34	LHCb	$\pm 10.0 \times 10^{-4}$	±1.5	±14	$\pm 4.3 \times 10^{-5}$	LHCb
			2025					2025
		±21				±22		
±0.70	±0.20	±10		$\pm 3.0 \times 10^{-4}$	±0.35	±4	$\pm 1.0 \times 10^{-5}$	
R _K [%]	R(D [*]) [%]	$\frac{\mathcal{B}(B^0 \to \mu^+ \mu^-)}{\mathcal{B}(B^0_s \to \mu^+ \mu^-)} \ [\%]$	HL-LHC	a ^s sl	γ[°]	ϕ_s [mrad]	AΓ	HL-LHC

Summary

LHCb has been operated well in run1+run2 and produced nice results in charmed baryons

LHCb Upgrade is under construction

• Expect to accumulate data of 50 fb^{-1} after Run4 (2019)

LHCb Upgrade 2 aiming at 300 fb⁻¹ with fully new detector to deepen our understanding of heavy flavour physics

• You inputs are essential

Backup slides

Track types for the LHCb Run I and II

How to increase the LHCb statistics significantly?

> LHCb up to LS2 (2018)

- Running at levelled luminosity of $\sim 4\times 10^{32}~cm^{-2}s^{-1},$ pile-up~1
- First level hardware trigger running at event rate ~1 MHz
- Record ~12 kHz (0.6 GB/s)

> LHCb Upgrade I (2021-)

- Increase luminosity to a levelled $2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$, pile-up~5
- Run fully flexible and efficient software trigger up to 40 MHz
- Record with 10 GB/s

The most severe bottlenecks:

- Hardware trigger limited to ~ 1 MHz
- Tracking reconstruction

The LHCb Upgrade I detector

- A complete new detector
 - All sub-detectors read out at 40 MHz for a fully software trigger

Tracking system

- + VELO: Silicon strip $\rightarrow 55 \times 55 \ \mu m^2$ PIXEL
- TT \rightarrow UT: Silicon strip \rightarrow Silicon microstrip
- T1-T3→SciFi: Straw + silicon microstrip
 → Scintillating Fibre Tracker

PID system

- RICH: HPD → MaPMT improved optics + mechanics
- ECAL/HCAL: remains the same ECAL inner modules replaced in LS3
- Muon: increased granularity

Plan of the LHC(b) upgrade

LHCb up to 2018 \rightarrow 9 fb⁻¹

- ✓ Demonstrated feasibility of high precision flavour physics at hadron colliders
- Find/rule out large sources of NP at the TeV scale 2019/11/23

LHCb Upgrade I $\rightarrow \geq 50 \text{ fb}^{-1}$

- ✓ Increase trigger efficiency
- Aim at experimental sensitivities comparable to theoretical uncertainties

LHCb Upgrade II $\rightarrow \geq 300 \text{ fb}^{-1}$

- ✓ Take full profit of HL-LHC
- Physics document has been submitted to LHCC arXiv:1808.08865

Charmed baryon lifetimes: systematic uncertainties

Source	$r_{\Omega_c^0}$ (10 ⁻⁴)	-
Decay-time acceptance	13	-
Ω_b^- prod. spectrum	3	
Ω_b^- lifetime	4	
Decay-time resolution	3	
Background subtraction	18	
$H_c(\tau^-, D)$, random μ^-	8	
Simulated sample size	98	
Total systematic	101	-
Statistical uncertainty	230	-

(10^{-4})	Source	$r_{\Lambda_c^+}$	$r_{\Xi_c^+}$	$r_{\Xi^0_c}$
13	Decay-time acceptance	6	13	4
3	H_c lifetime	4	4	12
4	H_b lifetime	1	3	0
3	H_b production spectra	2	4	1
18	Background subtraction	8	17	7
8	$H_c(\tau^-, D, \text{random } \mu^-)$	5	11	3
98	Simulated sample size	4	13	5
01	Total systematic	13	28	16
30	Statistical uncertainty	10	34	17

Ξ_{cc}^{++} mass measurement: systematics

 $3621.55 \pm 0.23 \,(\text{stat}) \pm 0.30 \,(\text{syst}) \,\text{MeV}/c^2.$

	Uncertainty [MeV/c^2]
Source	$\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$	$\Xi_{cc}^{++} \to \Xi_c^+ \pi^+$
Momentum-scale calibration	0.21	0.34
Energy-loss correction	0.05	0.03
Simulation/data agreement	0.09	0.05
Selection-induced bias on the Ξ_{cc}^{++} mass	0.09	0.09
Final-state radiation	0.05	0.16
Background model	0.01	0.04
$\Lambda_c^+, \Xi_c^+ \text{ mass}$	0.14	0.22
Total	0.29	0.49

Measurement of Ξ_{cc}^{++} production

arXiv:1910.11316 Submitted to Chin.Phys.C

-2

-4

0

杨振伟,清华大学高能物理研究中心

 $\log_{10}^{4} (\chi^2_{IP}(\Lambda^+_c))^{6}$

2

Measurement of \mathcal{Z}_{cc}^{++} production: systematic uncertainties

arXiv:1910.11316 Submitted to Chin.Phys.C

Source	TOS [%]	exTIS [%]
Simulation sample size	8.8	7.3
Fit model	5.4	5.3
Hardware trigger	9.0	6.3
Tracking	3.4	3.4
Particle identification	5.5	5.4
Kinematic correction	7.3	6.0
Sum in quadrature	16.8	14.1

Doubly suppressed $\Xi_c^+ \rightarrow p\phi$

JHEP 04 (2019) 084

Source	Uncertainty (%)
Signal fit model	0.5
Background fit model	0.5
<i>sPlot</i> -related uncertainty	1.0
Trigger efficiency	3.0
PID efficiency	2.2
Tracking	1.0
$(p_{\rm T}, y)$ binning	1.3
Size of simulation sample	0.7
Selection requirements	0.8
Total	4.4