2019理论与实验联合研讨会: 粲物理

Weak Decays of Anti-triplet Charmed Baryon

徐繁荣

2019.11.23

合作者:郑海扬、康现伟、蒙观保、邹晋祺

Outline

- Introduction
- Theoretical working frame
- Numerical results
- Discussion
 - Two examples
 - Comparison
- Summary

Introduction

Λ_c^+ @BESIII 4.6 GeV, 567/pb

•
$$\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)$$

• ARGUS + CLEO : $(5.0 \pm 1.3)\%$ PDG 2014

Belle:
$$(6.84 \pm 0.24^{+0.21}_{-0.27})\%$$

Belle, PRL 113 (2014), 042002

PDG 2016: (6.35 ± 0.33)%

• 12 modes measured by BESIII

Mode	This work (%)	PDG (%)
pK_S^0	$1.52 \pm 0.08 \pm 0.03$	1.15 ± 0.30
$pK^{-}\pi^{+}$	$5.84 \pm 0.27 \pm 0.23$	5.0 ± 1.3
$pK_S^0\pi^0$	$1.87 \pm 0.13 \pm 0.05$	1.65 ± 0.50
$pK^0_S\pi^+\pi^-$	$1.53 \pm 0.11 \pm 0.09$	1.30 ± 0.35
$pK^{-}\pi^{+}\pi^{0}$	$4.53 \pm 0.23 \pm 0.30$	3.4 ± 1.0
$\Lambda \pi^+$	$1.24 \pm 0.07 \pm 0.03$	1.07 ± 0.28
$\Lambda \pi^+ \pi^0$	$7.01 \pm 0.37 \pm 0.19$	3.6 ± 1.3
$\Lambda \pi^+ \pi^- \pi^+$	$3.81 \pm 0.24 \pm 0.18$	2.6 ± 0.7
$\Sigma^0 \pi^+$	$1.27 \pm 0.08 \pm 0.03$	1.05 ± 0.28
$\Sigma^+\pi^0$	$1.18 \pm 0.10 \pm 0.03$	1.00 ± 0.34
$\Sigma^+ \pi^+ \pi^-$	$4.25 \pm 0.24 \pm 0.20$	3.6 ± 1.0
$\Sigma^+ \omega$	$1.56 \pm 0.20 \pm 0.07$	2.7 ± 1.0

PDG values for Λ_c^+ decay BFs before 2016 version become obsolete

Λ_c^+ @BESIII 4.6 GeV, 567/pb

• Singly-Cabibbo-suppressed decay has been measured

 $\mathcal{B}(\Lambda_c^+ \to p\eta) = (1.24 \pm 0.28 \text{(stat.)} \pm 0.10 \text{(syst.)}) \times 10^{-3}$ $\mathcal{B}(\Lambda_c^+ \to p\pi^0) < 2.7 \times 10^{-4}$ BESIII, PRD 95 (2017), 111102

Neutral mode can be measured

 $\mathcal{B}(\Lambda_c^+ \to nK_S^0 \pi^+) = (1.82 \pm 0.23 (\text{stat}) \pm 0.11 (\text{syst}))\%$ BESIII, PRL 118 (2016), 112001

• More decay asymmetries can be measured

 $\begin{aligned} \alpha_{\Lambda\pi^+} &\sim 10\%, \quad \alpha_{\Sigma^0\pi^+} &\sim (19-66)\% \\ & \text{D. Wang, R.-G. Ping, L. Li, X.-R. Lyu, Y.-H. Zheng, Chin. Phys. C 41 (2017) 023106} \\ \alpha_{\Lambda\pi^+} &= -0.80 \pm 0.11 \pm 0.02 \\ \alpha_{\Sigma^+\pi^0} &= -0.57 \pm 0.10 \pm 0.07 \end{aligned}$

 $\alpha_{\Sigma^0\pi^+} = -0.73 \pm 0.17 \pm 0.07$

Λ_c^+ @BESIII 4.6 GeV, 567/pb

• More precise measurement of Cabibbo-favored process

$$\begin{split} & \mathcal{B}(\Lambda_c^+ \to \Xi^0 K^+) = (5.90 \pm 0.86 \pm 0.39) \times 10^{-3} \\ & \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta) = (0.41 \pm 0.19 \pm 0.05)\% \ (< 0.68\%) \\ & \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta') = (1.34 \pm 0.53 \pm 0.21)\% \ (< 1.9\%) \end{split} \\ & \text{BESIII, PLB 783} \ (2018), 200\text{-}206 \\ & \text{BESIII, P$$

$\Xi_c @Belle (772\pm11) \times 10^6 B\overline{B}pair$

• First measurement of $\Xi_c^0 \to \Xi^- \pi^+$

 $\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^0) = [9.51 \pm 2.10(\text{stat.}) \pm 0.88(\text{syst.})] \times 10^{-4}$

 $\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) = [1.80 \pm 0.50 (\text{stat.}) \pm 0.14 (\text{syst.})]\%$

Belle, PRL 122 (2019) 082001

• The branching fraction of $\Xi_c^+ \to \Xi^0 \pi^+$ $\mathcal{B}(\bar{B}^0 \to \bar{\Lambda}_c^- \Xi_{c_-}^+) = [1.16 \pm 0.42 (\text{stat.}) \pm 0.15 (\text{syst.})] \times 10^{-3}$ $\mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+) = (2.86 \pm 1.21 \pm 0.38) \times 10^{-2}$ Belle, 1904.12093 $\Gamma(\Xi_c^+ \to \Xi^0 \pi^+) / \Gamma(\Xi_c^+ \to \Xi^- \pi^+ \pi^+) = (0.55 \pm 0.13 \pm 0.09)$ CLEO, PLB373(1996)261

$$\mathcal{B}(\Xi_c^+ \to \Xi^0 \pi^+) = (1.57 \pm 0.83)\%$$

Lifetimes @ LHCb

 $\tau_{\Lambda_c^+} = 203.5 \pm 1.0 \pm 1.3 \pm 1.4$ fs,

 $\tau_{\Xi_c^+} = 456.8 \pm 3.5 \pm 2.9 \pm 3.1$ fs,

 $\tau_{\Xi_c^0} = 154.5 \pm 1.7 \pm 1.6 \pm 1.0$ fs,

3.3 σ larger than PDG

Talk by 杨振伟

LHCb, 1906.08350

Theory issues of charmed baryon

- Meaning of weak decays of charmed baryon
 - Examination of weak interaction
 - Exploration of strong interaction
- Difficulty in charmed baryon study
 - not heavy enough to apply HQET
 - not light enough to apply ChPT
 - Model estimation cannot be avoided

BF of Cabbibo-favored decays in 1990s

	RQM	Pole	Pole		RQM	Pole	C.A.	
Decay	Körner,	Xu,	Ch	leng,	Ivanov et al	Żenczykowski	Sharma,	Expt.
	Krämer [<u>8]</u>	Kamal $[\underline{9}]$	Tser	ng $[10]$	[11]	$[\underline{12}]$	Verma [<u>13</u>]	$[\underline{7}]$
			CA	Pole				
$\Lambda_c^+\to\Lambda\pi^+$	input	1.62	1.46	0.88	0.79	0.52	1.12	1.30 ± 0.07
$\Lambda_c^+ \to p \bar{K}^0$	input	1.20	3.64	1.26	2.06	1.71	1.64	3.16 ± 0.16
$\Lambda_c^+ \to \Sigma^0 \pi^+$	0.32	0.34	1.76	0.72	0.88	0.39	1.34	1.29 ± 0.07
$\Lambda_c^+ \to \Sigma^+ \pi^0$	0.32	0.34	1.76	0.72	0.88	0.39	1.34	1.24 ± 0.10
$\Lambda_c^+ \to \Sigma^+ \eta$	0.16				0.11	0.90	0.57	0.70 ± 0.23
$\Lambda_c^+ \to \Sigma^+ \eta'$	1.28				0.12	0.11	0.10	
$\Lambda_c^+ \to \Xi^0 K^+$	0.26	0.10			0.31	0.34	0.13	0.50 ± 0.12

- Non-factorizable contributions play an essential role
 - $\Lambda_c^+ \rightarrow \Xi^0 K^+$: only proceed through W-exchange
 - $\Lambda_c^+ \rightarrow \Sigma^+ \pi^0$, $\Sigma^+ \eta$, $\Sigma^+ \eta'$: proceed through W-exchange or internal W-emission
- Except current algebra, predictions are generally below experiment

BF of Cabbibo-favored decays in 1990s

	RQM	Pole	Po	ole	RQM	Pole	C.A.		
Decay	Körner,	Xu,	Che	eng,	Ivanov et al	Żenczykowski	Sharma,	Expt.	
	Krämer [16]	Kamal $[18]$	Tsen	g [19]	[17]	[20]	Verma [21]	[6]	
			CA	Pole					
$\Xi_c^+ \to \Sigma^+ \bar{K}^0$	6.45	0.44	0.04	0.84	3.08	1.56	0.04		
$\Xi_c^+ \to \Xi^0 \pi^+$	3.54	3.36	0.84	3.93	4.40	1.59	0.53	1.57 ± 0.83	new
$\Xi_c^0 \to \Lambda \bar{K}^0$	0.12	0.37	1.0	0.27	0.42	0.35	0.54		
$\Xi_c^0 \to \Sigma^0 \bar{K}^0$	1.18	0.10	0.02	0.13	0.20	0.11	0.07		
$\Xi_c^0 \to \Sigma^+ K^-$	0.12	0.12			0.27	0.36	0.12		
$\Xi_c^0 ightarrow \Xi^0 \pi^0$	0.03	0.56	1.25	0.28	0.04	0.69	0.87		
$\Xi_c^0 \to \Xi^- \pi^+$	1.04	1.74	0.83	1.25	1.22	0.61	2.46	1.80 ± 0.52	new
$\Xi_c^{ar 0} o \Xi^0 \eta$	0.24				0.28	0.69	0.09		
$\Xi_c^{\bar 0} o \Xi^0 \eta'$	0.85				0.31	0.01	0.14		

- No channel contains pure factorizable contributions
- Nonfactorizable contributions play an essential role
 - $\Xi_c^0 \to \Sigma^+ K^-, \Xi_c^0 \to \Xi^0 \pi^0, \Xi_c^0 \to \Xi^0 \eta$: only contain nonfactorizable contribution
 - Others contain both two parts of contributions

Decay asymmetry α of Cabbibo-favored decays in 1990s

		RQM	Pole	P	ole	RQM	Pole	C.A.		
	Decay	Körner,	Xu,	Ch	eng,	Ivanov et al	Żenczykowski	Sharma,	Expt.	
		Krämer [8]	Kamal [9]	Tser	ng [10]	[11]	[12]	Verma [13]	[7]	BESIII
				\mathbf{CA}	Pole					
\checkmark	$\Lambda_c^+ \to \Lambda \pi^+$	-0.70	-0.67	-0.99	-0.95	-0.95	-0.99	-0.99	-0.91 ± 0.15	$-0.80 \pm 0.11 \pm 0.02$
	$\Lambda_c^+ \to p \bar{K}^0$	-1.0	0.51	-0.90	-0.49	-0.97	-0.66	-0.99		
	$\Lambda_c^+\to \Sigma^0\pi^+$	0.70	0.92	-0.49	0.78	0.43	0.39	-0.31		$-0.73 \pm 0.17 \pm 0.07$
	$\Lambda_c^+\to \Sigma^+\pi^0$	0.70	0.92	-0.49	0.78	0.43	0.39	-0.31	$-0.45{\pm}~0.32$	$-0.57 \pm 0.10 \pm 0.07$
	$\Lambda_c^+ \to \Sigma^+ \eta$	0.33				0.55	0	-0.91		-
	$\Lambda_c^+\to \Sigma^+\eta'$	-0.45				-0.05	-0.91	0.78		
	$\Lambda_c^+\to \Xi^0 K^+$	0	0			0	0	0		

 $\Lambda_{c}^{+} \to \Sigma^{+} \pi^{0}$

- > CLEO ('95) measured α = -0.45±0.31±0.06
- \blacktriangleright Pole model & RQM predict positive α
- > Current algebra leads to negative α
- > The sign of α has been confirmed by BESIII

 $\blacksquare \Lambda_{c}^{+} \rightarrow \Xi^{0} \mathsf{K}^{+}$

- \succ theory: small s-wave $\Rightarrow \alpha = 0$
 - $\hfill\square$ Can be improved
- > Experiment ?

BESIII, PLB 783 (2018), 200-206

Decay asymmetry α of Cabbibo-favored decays in 1990s

	RQM	Pole	Po	ole	RQM	Pole	C.A.	
Decay	Körner, Krämor [16]	Xu, Kamal [18]	Ch	neng,	Ivanov et al	Żenczykowski	Sharma, Vorma [21]	Expt.
	Manier [10]	Kalliai [10]	CA	Pole	[17]	[20]	verma [21]	႞ႄ႞
$\Xi_c^+ \to \Sigma^+ \bar{K}^0$	-1.0	0.24	0.43	-0.09	-0.99	1.0	0.54	
$\Xi_c^+ \to \Xi^0 \pi^+$	-0.78	-0.81	-0.77	-0.77	-0.97	1.0	-0.27	
$\Xi_c^0 \to \Lambda \bar{K}^0$	-0.76	1.00	-0.88	-0.73	-0.75	-0.29	-0.79	
$\Xi_c^{\bar 0} \to \Sigma^0 \bar K^0$	-0.96	-0.99	0.85	-0.59	-0.55	-0.50	0.48	
$\Xi_c^0 \to \Sigma^+ K^-$	0	0			0	0	0	
$\Xi_c^0 ightarrow \Xi^0 \pi^0$	0.92	0.92	-0.78	-0.54	0.94	0.21	-0.80	
$\Xi_c^0 \to \Xi^- \pi^+$	-0.38	-0.38	-0.47	-0.99	-0.84	-0.79	-0.97	-0.6 ± 0.4
$\Xi_c^0 \to \Xi^0 \eta$	-0.92				-1.0	0.21	-0.37	
$\Xi_c^{\bar 0}\to \Xi^0\eta'$	-0.38				-0.32	-0.04	0.56	

 $\blacksquare \Xi_{c}^{+} \rightarrow \Xi^{-} \pi^{+}:$

 \checkmark

- > CLEO ('96) measured α = -0.6±0.4
- > All model estimations predict correct sign of α

Could Belle/Belle II provide *α* measurement ?

Our strategy

- Non-factorizable contribution is incorporated
- Methodology: Pole model + current algebra

Theoretical framework

Topological diagram approach

$$M(\mathcal{B}_i \to \mathcal{B}_f P) = i u_f (A - B\gamma_5) u_f$$

$$A = A^{\text{fac}} + A^{\text{nf}}$$
$$B = B^{\text{fac}} + B^{\text{nf}}$$

T (10

L.-L. Chau, H.-Y. Cheng and B. Tseng, Phys. Rev. D 54(1996)2132

Factorizable part: naïve factorization

$$A^{\text{fac.}} = \frac{G_F}{\sqrt{2}} a_{1,2} V_{ud}^* V_{cs} f_P(m_{\mathcal{B}_c} - m_{\mathcal{B}}) f_1(q^2)$$
$$B^{\text{fac.}} = -\frac{G_F}{\sqrt{2}} a_{1,2} V_{ud}^* V_{cs} f_P(m_{\mathcal{B}_c} + m_{\mathcal{B}}) g_1(q^2)$$

- The choice of $a_{1,2}$ depends on the meson in final states
- Effective N_c included in $a_{1,2}$ is determined by experiment

$$a_2 = c_2 + \frac{c_1}{N_c}$$

 $\mathcal{B}(\Lambda_c^+ \to p\phi) = (1.04 \pm 0.21) \times 10^{-3}$

BESIII, Phys. Rev. Lett. 117, 232002 (2016).

Factorizable part: form factor

- FF sign issue
- MIT bag model estimation

Static limit

$$f_1^{B_f B_i}(q_{\max}^2) = \langle B_f \uparrow | b_{q_1}^{\dagger} b_{q_2} | B_i \uparrow \rangle \int d^3 \boldsymbol{r} (u_{q_1} u_{q_2} + v_{q_1} v_{q_2})$$

$$g_1^{B_f B_i}(q_{\max}^2) = \langle B_f \uparrow | b_{q_1}^{\dagger} b_{q_2} \sigma_z | B_i \uparrow \rangle \int d^3 \boldsymbol{r} (u_{q_1} u_{q_2} - \frac{1}{3} v_{q_1} v_{q_2})$$

Run

$$f_i(q^2) = \frac{f_i(0)}{(1 - q^2/m_V^2)^2}, \qquad g_i(q^2) = \frac{g_i(0)}{(1 - q^2/m_A^2)^2}$$

• More efforts on FF required

modes	$(car{q})$	$f_1(q_{\max}^2)$	$f_1(m_P^2)/f_1(q_{\rm max}^2)$	$g_1(q_{\max}^2)$	$g_1(m_P^2)/g_1(q_{\rm max}^2)$
$\Xi_c^+\to \Sigma^+ \overline{K}{}^0$	$(c\overline{s})$	$-\frac{\sqrt{6}}{2}Y_1$	0.44907	$-\frac{\sqrt{6}}{2}Y_2$	0.60286
$\Xi_c^+\to \Xi^0\pi^+$	$(c\overline{s})$	$-rac{\sqrt{6}}{2}Y_1^s$	0.49628	$-rac{\sqrt{6}}{2}Y_2^s$	0.63416
$\Xi_c^0\to\Lambda\overline{K}^0$	$(c\overline{s})$	$\frac{1}{2}Y_1$	0.38700	$\frac{1}{2}Y_2$	0.55337
$\Xi_c^0\to \Sigma^0 \overline{K}{}^0$	$(c\overline{s})$	$\frac{\sqrt{3}}{2}Y_1$	0.44929	$\frac{\sqrt{3}}{2}Y_2$	0.60304
$\Xi_c^0\to \Xi^-\pi^+$	$(c\overline{s})$	$-rac{\sqrt{6}}{2}Y_1^s$	0.49911	$-rac{\sqrt{6}}{2}Y_2^s$	0.63636
$\Xi_c^+\to \Sigma^0\pi^+$	$(car{d})$	$\frac{\sqrt{3}}{2}Y_1$	0.36045	$\frac{\sqrt{3}}{2}Y_2$	0.52523
$\Xi_c^+\to\Lambda\pi^+$	$(car{d})$	$-\frac{1}{2}Y_1$	0.30260	$-\frac{1}{2}Y_2$	0.47622
$\Xi_c^+\to \Sigma^+\pi^0$	$(car{d})$	$-\frac{\sqrt{6}}{2}Y_1$	0.35774	$-\frac{\sqrt{6}}{2}Y_2$	0.52294
$\Xi_c^+ \to \Sigma^+ \eta_8$	$(car{d})$	$-\frac{\sqrt{6}}{2}Y_1$	0.41371	$-\frac{\sqrt{6}}{2}Y_2$	0.57735
$\Xi_c^+\to \Xi^0 K^+$	$(c\overline{s})$	$-rac{\sqrt{6}}{2}Y_1^s$	0.55058	$-rac{\sqrt{6}}{2}Y_2^s$	0.68080
$\Xi_c^0\to\Lambda\eta_8$	$(c\bar{s}), (c\bar{d})$	$\frac{1}{2}Y_1$	0.39685, 0.34715	$\frac{1}{2}Y_2$	0.56286, 0.52343
$\Xi_c^0 \to \Sigma^0 \eta_8$	$(c\bar{s}), (c\bar{d})$	$\frac{\sqrt{3}}{2}Y_1$	0.46073, 0.41395	$\frac{\sqrt{3}}{2}Y_2$	0.61338, 0.57754
$\Xi_c^0\to\Lambda\pi^0$	$(car{d})$	$\frac{1}{2}Y_1$	0.30019	$\frac{1}{2}Y_2$	0.47410
$\Xi_c^0\to \Sigma^0\pi^0$	$(car{d})$	$\frac{\sqrt{3}}{2}Y_1$	0.35795	$\frac{\sqrt{3}}{2}Y_2$	0.52311
$\Xi_c^0\to \Sigma^-\pi^+$	$(car{d})$	$\frac{\sqrt{6}}{2}Y_1$	0.36183	$\frac{\sqrt{6}}{2}Y_2$	0.52638
$\Xi_c^0\to \Xi^- K^+$	$(c\overline{s})$	$-\frac{\sqrt{6}}{2}Y_1^s$	0.55371	$-\frac{\sqrt{6}}{2}Y_2^s$	0.68316

Non-factorizable part: pole model

Non-factorizable part: current algebra

Advantage: avoid $\frac{1}{2}$ \bullet

$$A^{\text{com}} = -\frac{\sqrt{2}}{f_{P^a}} \langle B_f | [Q_5^a, H_{\text{eff}}^{PV}] | B_i \rangle = \frac{\sqrt{2}}{f_{P^a}} \langle B_f | [Q^a, H_{\text{eff}}^{PC}] | B_i \rangle$$
$$B^{\text{pole}} = \frac{\sqrt{2}}{f_{P^a}} \sum_{B_n} \left[g_{B_f B_n}^A \frac{m_f + m_n}{m_i - m_n} a_{ni} + a_{f\eta} \frac{m_i + m_n}{m_f - m_n} g_{B_n B_i}^A \right]$$

- S-wave: commutator
- lacksquare

$$g_{\mathcal{B}'\mathcal{B}P^a} = \frac{\sqrt{2}}{f_{P^a}}(m_{\mathcal{B}'} + m_{\mathcal{B}})g^A_{\mathcal{B}'\mathcal{B}},$$

Baryon matrix elements & axial form factors

• MIT bag model estimation

$$a_{B'B} \equiv \langle B' | \mathcal{H}_{\text{eff}}^{\text{PC}} | B \rangle = \frac{G_F}{2\sqrt{2}} \sum_{q=d,s} V_{cq} V_{uq}^* c_- \langle B' | O_-^q | B \rangle$$
$$O_{\pm}^q = O_1^q \pm O_2^q = (\bar{q}c)(\bar{u}q) \pm (\bar{q}q)(\bar{u}c)$$
$$C_- = c_1 - c_2$$
$$g_{\mathcal{B}'\mathcal{B}}^{A(P)} = \langle \mathcal{B}' \uparrow | b_{q_1}^\dagger b_{q_2} \sigma_z | \mathcal{B} \uparrow \rangle \int d^3 r \left(u_{q_1} u_{q_2} - \frac{1}{3} v_{q_1} v_{q_2} \right)$$

Jinqi's Mathematica package

Results for anti-triplet decays

 Λ_c^+ decays: CF

J. Zou, FX, G. Meng and H.-Y. Cheng, 1910.13626

Channel	A^{fac}	$A^{\rm com}$	A^{tot}	B^{fac}	B^{ca}	B^{tot}	$\mathcal{B}_{ ext{theo}}$	$\mathcal{B}_{\mathrm{exp}}$ [7]	$lpha_{ m theo}$	$lpha_{ m exp}$
$\Lambda_c^+ \to p\overline{K}^0$	3.45	4.48	7.93	-6.98	-2.06	-9.04	2.11×10^{-2}	$(3.18 \pm 0.16)10^{-2}$	-0.75	0.18 ± 0.45
$\Lambda_c^+ \to \Lambda \pi^+$	5.34	0	5.34	-14.11	3.60	-10.51	1.30×10^{-2}	$(1.30 \pm 0.07)10^{-2}$	-0.93	-0.84 ± 0.09
$\Lambda_c^+ \to \Sigma^0 \pi^+$	0	7.68	7.68	0	-11.38	-11.38	2.24×10^{-2}	$(1.29 \pm 0.07) 10^{-2}$	-0.76	-0.73 ± 0.18
$\Lambda_c^+ \to \Sigma^+ \pi^0$	0	-7.68	-7.68	0	11.34	11.34	2.24×10^{-2}	$(1.25 \pm 0.10)10^{-2}$	-0.76	-0.55 ± 0.11
$\Lambda_c^+ \to \Xi^0 K^+$	0	-4.48	-4.48	0	-12.10	-12.10	$0.73 imes10^{-2}$	$(0.55\pm0.07)10^{-2}$	0.90	0.77 ± 0.78
$\Lambda_c^+ \to \Sigma^+ \eta$	0	3.10	3.10	0	-15.54	-15.54	0.74×10^{-2}	$(0.53 \pm 0.15)10^{-2}$	-0.95	

H.-Y. Cheng and B. Tseng, Phys. Rev. D 48 (1993) 4188

Reaction	$A^{ m fac}$	A^{com}	A^{tot}	B^{fac}	B^{pole}	$B^{\rm tot}$	α	Г	(Br) _{theory}
$\Lambda_c^+ \rightarrow p \overline{K}^0$	-5.73	-4.44	-10.17	14.33	2.10	16.43	-0.90	1.82	3.46
$\Lambda_c^+\! ightarrow\!\Lambda\pi^+$	-5.40	0	-5.40	18.09	-4.14	13.95	-0.99	0.73	1.39
$\Lambda_c^+ { ightarrow} \Sigma^0 \pi^+$	0	-7.66	-7.66	0	6.42	6.42	-0.49	0.88	1.67
$\Lambda_c^+ \rightarrow \Sigma^+ \pi^0$	0	7.66	7.66	0	-6.42	-6.42	-0.49	0.88	1.67
$\Lambda_c^+ \rightarrow \Xi^0 K^+$	0	-0.06	-0.06	0	-2.98	-2.98			

 Λ_c^+ decays: SCS

J. Zou, FX, G. Meng and H.-Y. Cheng, 1910.13626

Channel	A^{fac}	$A^{\rm com}$	A^{tot}	B^{fac}	B^{ca}	B^{tot}	${\cal B}_{ m theo}$	$\mathcal{B}_{\mathrm{exp}}$ [7]	$\alpha_{ m theo}$	$lpha_{ m exp}$
$\Lambda_c^+ \to p \pi^0$	0.41	-0.81	-0.40	-0.87	2.07	1.21	1.26×10^{-4}	$<2.7\times10^{-4}$	-0.97	
$\Lambda_c^+ \to p\eta$	-0.96	-1.11	-2.08	1.93	-0.34	1.59	1.28×10^{-3}	$(1.24 \pm 0.29)10^{-3}$	-0.55	
$\Lambda_c^+ \to n\pi^+$	1.64	-1.15	0.50	-3.45	2.93	-0.52	0.91×10^{-4}	_	-0.73	
$\Lambda_c^+ \to \Lambda K^+$	1.66	-0.08	1.58	-4.43	0.55	-3.70	1.07×10^{-3}	$(6.1 \pm 1.2)10^{-4}$	-0.96	
$\Lambda_c^+ \to \Sigma^0 K^+$	0	1.49	1.49	0	-2.29	-2.29	7.23×10^{-4}	$(5.2 \pm 0.8)10^{-4}$	-0.73	
$\Lambda_c^+ \to \Sigma^+ K^0$	0	2.10	2.10	0	-3.24	-3.24	1.44×10^{-3}	_	-0.73	

H.-Y. Cheng, X.-W. Kang and FX, Phys. Rev. D 97 (2018) 074028

Channel	A^{fac}	A^{com}	A ^{tot}	$B^{ m fac}$	B^{ca}	$B^{\rm tot}$	$\mathcal{B}_{ ext{theo}}$	\mathcal{B}_{expt}	$\alpha_{ m theo}$
$\Lambda_c^+ \to p \pi^0$	-0.41	0.81	0.40	0.87	-1.57	-0.70	0.75×10^{-4}	$< 2.7 \times 10^{-4}$	-0.95
$\Lambda_c^+ \to p\eta$	0.96	1.11	2.08	-1.93	-1.24	-3.17	1.28×10^{-3}	$(1.24 \pm 0.29)10^{-3}$	-0.56
$\Lambda_c^+ \to n \pi^+$	-1.64	1.15	-0.50	3.45	-1.57	1.88	$2.66 imes 10^{-4}$		-0.90
$\Lambda_c^+ \to \Lambda K^+$	-1.66	0.09	-1.57	4.43	-0.54	3.70	1.06×10^{-3}	$(6.1 \pm 1.2)10^{-4}$	-0.96
$\Lambda_c^+ \to \Sigma^0 K^+$	0	-1.48	-1.48	0	2.30	2.30	$7.18 imes 10^{-4}$	$(5.2\pm0.8)10^{-4}$	-0.73
$\Lambda_c^+ \to \Sigma^+ K^0$	0	-2.10	-2.10	0	3.25	3.25	1.44×10^{-3}		-0.74

 Ξ_c decays: CF

J. Zou, FX, G. Meng and H.-Y. Cheng, 1910.13626

Channel	A^{fac}	A^{com}	A^{tot}	B^{fac}	B^{ca}	B^{tot}	$\left \mathcal{B}_{ ext{theo}} ight $	${\cal B}_{ m exp}$	α_{theo}	$lpha_{ m exp}$
$\Xi_c^+ \to \Sigma^+ \overline{K}^0$	2.98	-4.48	-1.50	-9.95	12.28	2.32	0.20	—	-0.80	_
$\Xi_c^+ \to \Xi^0 \pi^+$	-7.41	5.36	-2.05	28.07	-14.03	14.04	1.72	1.57 ± 0.83	-0.78	—
$\Xi_c^0\to\Lambda\overline{K}^0$	-1.11	-5.41	-6.52	3.66	6.87	10.52	1.33	_	-0.86	_
$\Xi_c^0\to \Sigma^0 \overline{K}^0$	-2.11	3.12	1.02	7.05	-9.39	-2.33	0.04	_	-0.96	_
$\Xi_c^0\to \Sigma^+ K^-$	0	-4.42	-4.42	0	-11.33	-11.33	0.78	_	0.98	_
$\Xi_c^0\to \Xi^0\pi^0$	0	-7.58	-7.58	0	11.79	11.79	1.82	_	-0.77	_
$\Xi_c^0\to \Xi^0\eta$	0	-10.80	-10.80	0	-6.17	-6.17	2.67	_	0.30	—
$\Xi_c^0 \to \Xi^- \pi^+$	-7.42	-5.36	-12.78	28.24	2.65	30.89	6.47	1.80 ± 0.52	-0.95	-0.6 ± 0.4

 $\Xi_c^+ \to \Xi^0 \pi^+$: consistent well with Belle experiment $\Xi_c^0 \to \Xi^- \pi^+$: has a tension with Belle experiment

 Ξ_c decays: SCS

Channel	A^{fac}	$A^{\rm com}$	$A^{\rm tot}$	B^{fac}	B^{ca}	B^{tot}	$\mathcal{B}_{ ext{theo}}$	$\alpha_{\rm theo}$
$\Xi_c^+\to\Lambda\pi^+$	0.46	-1.50	-1.04	-1.69	2.16	0.47	0.85	-0.33
$\Xi_c^+\to \Sigma^0\pi^+$	-0.90	-1.00	-1.90	3.29	0.74	4.03	4.30	-0.95
$\Xi_c^+\to \Sigma^+\pi^0$	0.32	0.99	1.32	-1.16	1.61	0.44	1.36	0.23
$\Xi_c^+\to \Sigma^+\eta$	-0.74	1.42	0.68	2.58	-2.19	0.39	0.32	0.36
$\Xi_c^+ \to p \overline{K}^0$	0	-2.10	-2.10	0	2.64	2.64	3.96	-0.83
$\Xi_c^+\to \Xi^0 K^+$	-2.30	1.16	-1.14	8.43	-3.46	4.97	2.20	-0.98
$\Xi_c^0\to\Lambda\pi^0$	-0.12	1.06	0.95	0.42	-0.96	-0.53	0.24	-0.41
$\Xi_c^0\to\Lambda\eta$	0.27	1.51	1.78	-0.94	-0.27	-1.20	0.77	-0.45
$\Xi_c^0\to \Sigma^0\pi^0$	-0.23	-0.70	-0.93	0.82	1.36	2.18	0.38	-0.98
$\Xi_c^0\to \Sigma^0\eta$	0.53	-1.00	-0.48	-1.83	1.55	-0.28	0.05	0.36
$\Xi_c^0\to \Sigma^-\pi^+$	-1.28	-1.41	-2.69	4.67	0.22	4.89	2.62	-0.90
$\Xi_c^0\to \Sigma^+\pi^-$	0	1.41	1.41	0	2.49	2.49	0.71	0.89
$\Xi_c^0 \to p K^-$	0	-0.94	-0.94	0	-1.86	-1.86	0.35	0.99
$\Xi_c^0 \to n \overline{K}^0$	0	-2.10	-2.10	0	2.96	2.96	1.40	-0.89
$\Xi_c^0\to \Xi^0 K^0$	0	2.10	2.10	0	-4.17	-4.17	1.32	-0.85
$\Xi_c^0 \to \Xi^- K^+$	-2.31	-0.94	-3.24	8.49	0.71	9.20	3.90	-0.97

J. Zou, FX, G. Meng and H.-Y. Cheng, 1910.13626

Discussion

1. $\Lambda_c^+ \to \Xi^0 K^+$ puzzle 2. $\Xi_c^+ \to \Xi^0 \pi^+$ and $\Xi_c^0 \to \Xi^- \pi^+$ tension

$$\Lambda_c^+ \to \Xi^0 K^+$$
 puzzle

Type-III W-exchange

$$B^{\mathrm{ca}}(\Lambda_{c}^{+}\to\Xi^{0}K^{+}) = \frac{1}{f_{K}} \left(g_{\Xi^{0}\Sigma^{+}}^{A(K^{+})} \frac{m_{\Xi^{0}}+m_{\Sigma^{+}}}{m_{\Lambda_{c}^{+}}-m_{\Sigma^{+}}} a_{\Sigma^{+}\Lambda_{c}^{+}} + a_{\Xi^{0}\Xi_{c}^{0}} \frac{m_{\Xi_{c}^{0}}+m_{\Lambda_{c}^{+}}}{m_{\Xi^{0}}-m_{\Xi_{c}^{0}}} g_{Z_{c}^{0}\Lambda_{c}^{+}}^{A(K^{+})} + a_{\Xi^{0}\Xi_{c}^{\prime0}} \frac{m_{\Xi_{c}^{\prime0}}+m_{\Lambda_{c}^{+}}}{m_{\Xi^{0}}-m_{\Xi_{c}^{\prime0}}} g_{\Xi_{c}^{\prime0}\Lambda_{c}^{+}}^{A(K^{+})} \right).$$
cancellation
$$29$$

$\Lambda_c^+ \to \Xi^0 K^+$ puzzle

Exclusive non-leptonic charm baryon decays

J.G. Körner^{1,*} and M. Krämer^{1,2,*}

¹ Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, Postfach 3980, W-6500 Mainz, Federal Republic of Germany
 ² Deutsches Elektronen-Synchrotron DESY, W-2000 Hamburg, Federal Republic of Germany

 $\Lambda_{C}^{+} \rightarrow \Xi^{0}K^{+}$ puzzle

PHYSICAL REVIEW D

VOLUME 50, NUMBER 9

1 NOVEMBER 1994

Nonleptonic charmed-baryon decays: Symmetry properties of parity-violating amplitudes

P. Żenczykowski Department of Theoretical Physics, H. Niewodniczański Institute of Nuclear Physics, Radzikowskiego 152, Kraków, Poland (Received 1 March 1994)

The quark diagrams relevant for the nonleptonic charmed-baryon decays are shown in Fig. 1. Diagrams (a) and (a') correspond to the factorization amplitudes. For the parity-violating amplitudes, the contribution from diagrams (d) vanishes. The pole model contribution from the intermediate $\frac{1}{2}^{-}$ baryons is contained in the W-exchange diagrams (b1) and (b2). In Ref. [4] the quark model technique of Refs. [8,9] was used to deter-

$$\Lambda_{c}^{+} \rightarrow \Xi^{0}K^{+} \text{ puzzle}$$

$$\Lambda_{c}^{+} \bigoplus_{u \rightarrow 0}^{d} \bigoplus_{z^{0}}^{K^{+}} \bigoplus_{\Delta_{c}^{+} \rightarrow \Sigma^{+}}^{\Lambda_{c}^{+}} \bigoplus_{z^{0}}^{K^{+}} \bigoplus_{z^{0}}^{\Lambda_{c}^{+}} \bigoplus_{z^{0}}^{K^{+}} \bigoplus_$$

	$\Xi_c^+ \rightarrow$	Ξ^0	π^+	an	d 3	$\Xi_{c}^{0} -$	→ Ξ	π	+			
		Ξ_c^+	$\rightarrow \Xi$	$^{0}\pi^{+}$					Ξ_c^0 -	$\rightarrow \Xi^{-}$	π^+	
							_	r				
							_					
				Ξ_c^+ Ξ_c^0 Ξ_c^0	$\xrightarrow{\pi^+}_{\Xi^0}$			Ş		_	$\Xi_c^0 \times \Xi^0$	π^+ Ξ^-
A^{c}	$ com(\Xi_c^+ \to \Xi^0) $	$\pi^+) = -$	$-\frac{1}{f_{\pi}}a_{\Xi^0}$	$0 \Xi_c^0$				A^{com}	$(\Xi_c^0 \to \Xi^-)$	$\pi^+) = \frac{1}{2}$	$rac{1}{f_\pi}a_{\Xi^0\Xi^0_c}$	
$B^{\mathrm{ca}}(\Xi$	$T_c^+ \to \Xi^0 \pi^+) = \frac{1}{f_\pi} \left(e^{i \pi \pi t} \right)$	$a_{\Xi^0 \Xi^0_c} \frac{m_{\Xi^+_c}}{m_{\Xi^0}} - $	$+ \frac{m_{\Xi_c^0}}{m_{\Xi_c^0}} g^{A(\pi^-)}_{\Xi_c^0\Xi_c^0}$	$a_{\pm c}^{+)} + a_{\pm 0} \pm a_{c}^{\prime 0} - \frac{m}{m}$	$m_{\Xi_c^+} + m_{\Xi_c^{\prime 0}}$ $m_{\Xi^0} - m_{\Xi_c^{\prime 0}}$	$\left(g_{\Xi_c'^0\Xi_c^+}^{A(\pi^+)}\right)$		$B^{\mathrm{ca}}(\Xi_c^0$	$\rightarrow \Xi^{-}\pi^{+}) =$	$= \frac{1}{f_{\pi}} \left(g_{\Xi^{-}}^{A(\pi)} \right)$	$\frac{m_{\pi^+}}{m_{\Xi^0}} \frac{m_{\Xi^-} + m_{\Xi}}{m_{\Xi^0_c} - m_{\Xi}}$	$\left(\frac{2^{0}}{0}a_{\Xi^{0}\Xi^{0}_{c}}\right)$
=	Channel	A^{fac}	A^{com}	A^{tot}	B^{fac}	B^{ca}	B^{tot}	$ \mathcal{B}_{ ext{theo}} $	$\mathcal{B}_{ ext{exp}}$	$lpha_{ m theo}$	$lpha_{ m exp}$	
	$\Xi_c^0 \to \Xi^- \pi^+$	-7.42	-5.36	-12.78	28.24	2.65	30.89	6.47	1.80 ± 0.52	2 - 0.95	-0.6 ± 0.4	<mark>constructive</mark>
	$\Xi_c^+ \to \Xi^0 \pi^+$	-7.41	5.36	-2.05	28.07	-14.03	14.04	1.72	1.57 ± 0.83	3 - 0.78	_	distructive

Comparison

Modes	This work	Geng et al. [14, 46]	Expt.
$\Lambda_c^+ \to \Lambda \pi^+$	1.30(-0.93)	$1.27 \pm 0.07 (-0.77 \pm 0.07)$	$1.30 \pm 0.07 \ (-0.84 \pm 0.09)$
$\Lambda_c^+\to \Sigma^0\pi^+$	2.24 (-0.76)	$1.26 \pm 0.06 (-0.58 \pm 0.10)$	$1.29 \pm 0.07 \ (-0.73 \pm 0.18)$
$\Lambda_c^+\to \Sigma^+\pi^0$	2.24(-0.76)	$1.26 \pm 0.06 (-0.58 \pm 0.10)$	$1.25 \pm 0.10 \ (-0.55 \pm 0.11)$
$\Lambda_c^+\to \Sigma^+\eta$	0.74(-0.95)	$0.29 \pm 0.12 (-0.70^{+0.59}_{-0.30})$	0.53 ± 0.15
$\Lambda_c^+ \to p\overline{K}^0$	$2.11 \ (-0.75)$	$3.14 \pm 0.15 (-0.99^{+0.09}_{-0.01})$	$3.18 \pm 0.16 ~(~0.18 \pm 0.45)$
$\Lambda_c^+\to \Xi^0 K^+$	$0.73\ (\ 0.90)$	0.57 ± 0.09 $(1.00^{+0.00}_{-0.02})$	$0.55 \pm 0.07~(~0.77 \pm 0.78)$
$\Lambda_c^+ \to p \pi^0$	0.13 (-0.97)	$0.11^{+0.13}_{-0.11}$ (0.24 ± 0.68)	< 0.27
$\Lambda_c^+ \to p\eta$	1.28 (-0.55)	$1.12 \pm 0.28 (-1.00^{+0.06}_{-0.00})$	1.24 ± 0.29
$\Lambda_c^+ \to n\pi^+$	0.09(-0.73)	$0.76 \pm 0.11~(~0.27 \pm 0.11)$	
$\Lambda_c^+\to\Lambda K^+$	$1.07 \ (-0.96)$	$0.66 \pm 0.09~(~0.09 \pm 0.26)$	0.61 ± 0.12
$\Lambda_c^+\to \Sigma^0 K^+$	0.72 (-0.73)	$0.52 \pm 0.07 (-0.98^{+0.05}_{-0.02})$	0.52 ± 0.08
$\Lambda_c^+\to \Sigma^+ K^0$	1.44(-0.73)	$1.05 \pm 0.14 (-0.98^{+0.05}_{-0.02})$	

- Now most predictions for branching fraction and decay asymmetry are consistent with fitting results based on SU(3) symmetry.
- The difference in $\Lambda_c^+ \rightarrow n \pi^+$ requires

Comparison

Modes	This work	Geng et al. [14, 46]	Expt.
$\Xi_c^+ \to \Sigma^+ \overline{K}^0$	$0.20 \ (-0.80)$	$0.78^{+1.02}_{-0.78} \qquad (0.93^{+0.07}_{-0.14})$	
$\Xi_c^+ \to \Xi^0 \pi^+$	$1.72 \ (-0.78)$	$0.42 \pm 0.17 \ (-0.43 \pm 0.57)$	1.57 ± 0.83
$\Xi_c^0 o \Lambda \overline{K}^0$	$1.33 \ (-0.86)$	$1.42 \pm 0.09 (-0.85^{+0.16}_{-0.15})$	
$\Xi_c^0\to \Sigma^0 \overline{K}^0$	$0.04 \ (-0.94)$	$0.09_{-0.09}^{+0.11} \qquad (0.30_{-0.84}^{+0.70})$	
$\Xi_c^0\to \Sigma^+ K^-$	$0.78\ (\ 0.98)$	0.76 ± 0.14 ($0.93^{+0.07}_{-0.08}$)	
$\Xi_c^0\to \Xi^0\pi^0$	$1.82 \ (-0.77)$	$1.00 \pm 0.14 (-0.96^{+0.05}_{-0.04})$	
$\Xi_c^0\to \Xi^0\eta$	$2.67\ (\ 0.30)$	1.30 ± 0.23 (0.80 ± 0.16)	
$\Xi_c^0 \to \Xi^- \pi^+$	6.47 (-0.95)	$2.95 \pm 0.14 (-1.00^{+0.01}_{-0.00})$	$1.80 \pm 0.52 \ (-0.6 \pm 0.4)$

- The signs of α are consistent, except $\Xi_c^+ \to \Sigma^+ \overline{K^0}$
- Both groups have the same tension with $\Xi_c^+ \to \Xi^0 \pi^+$ and $\Xi_c^0 \to \Xi^- \pi^+$, waiting for further confirmation from experiment.

Modes	This work	Geng et al. [14, 46]	Expt.
$\Xi_c^+ \to \Lambda \pi^+$	$0.85 \ (-0.33)$	$1.23 \pm 0.42 (0.03 \pm 0.18)$	
$\Xi_c^+ \to \Sigma^0 \pi^+$	$4.30 \ (-0.95)$	$2.65 \pm 0.25 (-0.61 \pm 0.12)$	
$\Xi_c^+\to \Sigma^+\pi^0$	$1.36\ (\ 0.23)$	$2.61 \pm 0.67 (-0.18 \pm 0.36)$	
$\Xi_c^+ \to \Sigma^+ \eta$	$0.32\ (\ 0.36)$	1.50 ± 1.06 (0.30 ± 0.60)	
$\Xi_c^+ \to p \overline{K}^0$	$3.96\ (-0.83)$	$4.64 \pm 0.72 (-0.83 \pm 0.06)$	
$\Xi_c^+\to \Xi^0 K^+$	$2.20 \ (-0.98)$	$0.76 \pm 0.12 ~(~ 0.39 \pm 0.16)$	
$\Xi_c^0 \to \Lambda \pi^0$	$0.24 \ (-0.41)$	$0.31 \pm 0.11 (0.08 \pm 0.22)$	
$\Xi_c^0 o \Lambda \eta$	$0.76 \ (-0.45)$	$0.79 \pm 0.27 (-0.17 \pm 0.26)$	
$\Xi_c^0\to\Sigma^0\pi^0$	$0.38\ (-0.98)$	$0.50 \pm 0.09 (-0.74 \pm 0.25)$	
$\Xi_c^0\to\Sigma^0\eta$	$0.05\ (\ 0.36)$	$0.18 \pm 0.11 (-0.20 \pm 0.76)$	
$\Xi_c^0 \to \Sigma^- \pi^+$	$2.62 \ (-0.90)$	$1.83 \pm 0.09 (-0.99 \pm 0.01)$	
$\Xi_c^0\to \Sigma^+\pi^-$	$0.71\ (\ 0.89)$	0.49 ± 0.09 (0.91 ± 0.09)	
$\Xi_c^0 \to p K^-$	$0.35\ (\ 0.99)$	0.60 ± 0.13 (0.82 ± 0.11)	
$\Xi_c^0 o n \overline{K}^0$	$1.40 \ (-0.89)$	$1.07 \pm 0.06 \ (-0.74 \pm 0.12)$	
$\Xi_c^0\to \Xi^0 K^0$	$1.32 \ (-0.85)$	$0.96 \pm 0.04 \ (-0.53 \pm 0.09)$	
$\Xi_c^0\to \Xi^- K^+$	$3.90\ (-0.97)$	$1.28 \pm 0.06 (-1.00^{+0.01}_{-0.00})$	

Summary

- Weak decays of anti-triplet of charmed baryons are predicted.
- The sign of form factors can be discriminated.
- Several Λ_c^+ decays are in agreement with BESIII.
- The $\Lambda_c^+ \to \Xi^0 K^+$ puzzle is resolved.
- A tension exists in $\Xi_c^+ \to \Xi^0 \pi^+$ and $\Xi_c^0 \to \Xi^- \pi^+$.
- Wait for more BESIII, Belle/Belle-II data to examine Λ_c^+ , $\Xi_c^{+,0}$ decay theory.