### 第三课题:宇宙线起源的唯象研究

围绕宇宙线的起源问题,负责研究LHAASO的宇宙线能谱 和各向异性结果,以及来自扩展源和弥散伽马射线的观测结 果,主要研究目标有:

(1)发展相关的粒子加速理论,完善宇宙线的超新星遗迹 起源学说。

(2)分析脉冲星中高能粒子的加速和传播特征,确定其对 宇宙线正负电子和膝区宇宙线的贡献。

(3)发展Hillas宇宙线模型,确定该模型中各分量的起源 天体。

(4)研究加速和传播过程对宇宙线能谱的影响,分析膝区 宇宙线的起源。

(5)利用数值模拟的方法,分析宇宙线的传播特征。

(6)研究极高能宇宙线的起源并分析星爆星系中宇宙线的 特点。

(7)分析膝区以上宇宙线的起源,并用SKA观测测量散射 宇宙线的湍流的特点

### 银河系宇宙线唯象研究的最新进展





### 宇宙线和伽马射线源





3个任务组:

- A 宇宙线能谱和各向异性研究由紫台刘四明, 袁强和高能所胡红波负责;
- B 河外宇宙射线源的研究由南京大学王祥玉负责;
- C 宇宙线的多波段观测研究由国家天文台朱辉 和田文武负责。

实施方案

A 宇宙线能谱和各向异性研究:

负责人 : 刘四明、袁强、胡红波

核心成员:刘伟、辛玉良、郭义庆、曾厚敦、张轶然(博士)、石召东(博士)、包逸炜(博士)、张潇 具体研究任务:

• A1:发展Hillas模型,开展超新星遗迹的多波段研究。

- A1a对于已经探测到的30多个伽玛射线超新星遗迹,结合射电和X射线观测,通过多波段辐射能谱拟合分析 超新星遗迹中高能粒子分布函数演化的规律(刘四明、曾厚敦)
- A1b利用一个TeV辐射由轻子过程主导的年轻超新星遗样本(总共约10个源),分析年轻遗迹中高能电子分 布函数的演化规律(刘四明、张潇、曾厚敦)

A1c发展两分量的Hillas模型,将宇宙线总能谱和平均原子数谱与观测做比较(刘四明、张轶然)

• A2: 把宇宙线的能谱观测特征和各向异性观测相结合发展统一的宇宙线传播模型。

A2a结合空间直接探测实验和地面间接探测实验结果,构建统一的物理模型理解宇宙线能谱结构和各向异性特征(袁强、郭义庆、刘伟)

- A2b考虑到有大尺度磁场时,宇宙线扩散系数表现出高度的各向异性,利用一个1维扩散模型分析宇宙线正 负电子的能谱和各向异性特征(刘四明、石召东)
- A3: 分析超新星遗迹对宇宙线的贡献,完善银河系宇宙线的超新星遗迹起源学说。
- A4: 结合膝区宇宙线的测量,分析脉冲星风云对膝区和正负电子的贡献。

### 实施方案

B 河外宇宙线源的研究 负责人 : 王祥玉 核心成员: 席绍强、薛瑞、黄稚秋、孙晓娜 具体研究任务:

- B1:利用高能中微子研究河外源对宇宙线源的贡献,包括分析跟河外源关联的高能中微子的产生过程、以及分析它们对于宇宙线的贡献。
- B2:利用河外天体的伽玛射线辐射研究河外源对宇宙线的贡献,包括分析河外源的高能伽玛数据,分析高能伽玛辐射的起源机制以及对宇宙线的贡献。
- 献。

实施方案

- C 宇宙线的多波段观测研究
- 负责人:朱辉、田文武

核心成员:张海燕、崔晓红、周新霖、吴丹、苏洪全、杨媛媛、张孟飞、单素素、 雷贤欢、张少博

具体研究任务:

- C1:利用非线性激波加速理论构建超新星遗迹同步辐射的射电能谱,使用多 波段射电观测检验伽马射线观测给出的结果。
- C2:寻找与超新星遗迹成协的中性氢气体云(FAST),尝试利用HI的塞曼分裂测量超新星遗迹激波处的磁场强度,检验磁场放大理论。
- C3a: 宇宙线与星际介质相互作用。
- C3b: 宇宙线的扩散系数与介质湍动的关系。
- C4: 搜寻已知和LHAASO新发现伽马射线源在射电波段的对应体。
- C5:利用SKA和LHAASO在宇宙线10<sup>16</sup> eV 10<sup>18</sup> eV能段的重叠,相互检验结果的准确性。。



#### 具体研究任务的完成时间

| 年\月  | 1   | 2 | 3 | 4                | 5 | 6   | 7   | 8 | 9 | 10  | 11  | 12  |
|------|-----|---|---|------------------|---|-----|-----|---|---|-----|-----|-----|
| 2018 |     |   |   |                  |   |     |     |   |   |     | A1a |     |
| 2019 | A1b |   |   | A1c              |   | A2a |     |   |   | A2b |     | C1  |
| 2020 |     |   |   | A2c, A2d         |   |     |     |   |   | A3a |     | C2  |
| 2021 |     |   |   | A3b              |   | B1  | A4a |   |   |     |     | A4b |
| 2022 |     |   |   | A4c              |   |     | C3a |   |   |     |     | C3b |
| 2023 |     |   |   | B2,A2e,C4,<br>C5 |   |     |     |   |   |     |     |     |

A2a:结合空间直接探测实验和地面间接探测实验结果,构建统一的物理 模型理解宇宙线能谱结构和各向异性特征(袁强、郭义庆、刘伟)



传统图像

- ➤ 连续分布的宇宙线源
- > 均匀、各向同性扩散
- ➤ 可以大致解释宇宙线 能谱、次级粒子谱、 弥散伽马射线等数据

- ➤ 连续分布的宇宙线源 + 个别邻 近分立源
- >> 空间依赖扩散、各向异性扩散
- ➤ 宇宙线和伽马射线的精确测量 结果、各向异性观测等

### 宇宙线各向异性: 新图像



- ➢ 连续分布的宇宙线 源贡献能谱低能-高 能的主要部分,并 且主导100 TeV以上 的各向异性(其幅 度由空间依赖传播 过程压低)
- ➤ 邻近源(位置恰好 和Geminga接近) 贡献能谱细致结构 以及低能各向异性
- ➤ Geminga脉冲星同 时贡献正电子超
  - Liu et al. 2018





#### A1c:发展两分量的Hillas模型,将宇宙线总能谱和平均原子数谱与 观测做比较(刘四明、张轶然)

| 第 *卷 第 *期 | 天 文 学 报                 | Vol.* No.* |
|-----------|-------------------------|------------|
| 2019年*月   | ACTA ASTRONOMICA SINICA | *, 2019    |
|           |                         |            |

doi: \*

#### 宇宙线的超新星遗迹起源\*

张轶然<sup>1,2†</sup> 刘四明<sup>1,2‡</sup>



### 脉冲星风云加速PeV原子核的证据?



Right Ascension (deg)

### 脉冲星风云中粒子的输运

THE ASTROPHYSICAL JOURNAL, 877:54 (5pp), 2019 May 20 © 2019. The American Astronomical Society. All rights reserved.

https://doi.org/10.3847/1538-4357/ab1908



#### On the Gamma-Ray Nebula of Vela Pulsar. I. Very Slow Diffusion of Energetic Electrons within the TeV Nebula

Yiwei Bao<sup>1</sup>, Siming Liu<sup>2,3</sup>, and Yang Chen<sup>1,4</sup>



#### A2b:考虑到有大尺度磁场时,宇宙线扩散系数表现出高度的各向异性,利 用一个1维扩散模型分析宇宙线正负电子的能谱和各向异性特征(刘四明、 石召东)

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS **485**, 3869–3875 (2019) Advance Access publication 2019 March 11 doi:10.1093/mnras/stz684

#### Origin of cosmic ray electrons and positrons

Zhao-Dong Shi<sup>1,2\*</sup> and Siming Liu<sup>1,2\*</sup>







# A2b:考虑到有大尺度磁场时,宇宙线扩散系数表现出高度的各向异性,利用一个1维扩散模型分析宇宙线正负电子的能谱和各向异性特征(刘四明、石召东)

| Model<br>M  | $C_{e^{-}}{}^{a}$<br>1.06 × 10 <sup>3</sup>             | $\frac{\gamma_{e^-}^1}{3.35}$         | <i>E</i> <sub>br1</sub><br>4.96 | $\gamma_{e^-}^2$<br>3.64 | <i>E</i> <sub>br2</sub><br>32.4 | $\frac{\gamma_{e^-}^3}{3.37}$   | $C_{e^+}{}^{\rm a}$<br>163                            | $\gamma_{e^+}$<br>4.05           | C <sub>s</sub> <sup>a</sup><br>3.14                | γ <sub>s</sub><br>2.62             | $E_{\rm cut}$<br>$1.10 \times 10^3$               |                  |                                 |                         |                               | $\phi^{\mathrm{f}}$<br>1.14 |                                  |
|-------------|---------------------------------------------------------|---------------------------------------|---------------------------------|--------------------------|---------------------------------|---------------------------------|-------------------------------------------------------|----------------------------------|----------------------------------------------------|------------------------------------|---------------------------------------------------|------------------|---------------------------------|-------------------------|-------------------------------|-----------------------------|----------------------------------|
| Model<br>P1 | $C_{e^{-}}^{\text{inj}_{b}}$<br>6.04 × 10 <sup>41</sup> | $\gamma_{e^-}^{1,\text{inj}}$<br>3.05 |                                 |                          | $E_{\rm br}^{\rm inj}$<br>41.4  | $\gamma_{e^-}^{2,inj}$<br>2.63  | $C_{e^+}^{\text{inj}_{b}}$<br>1.03 × 10 <sup>41</sup> | $\gamma_{e^+}^{\rm inj}$<br>3.72 | $C_{\rm s}^{\rm inj_b}$<br>1.15 × 10 <sup>39</sup> | $\gamma_{\rm s}^{\rm inj}$         | $E_{\rm cut}^{\rm inj}$<br>2.80 × 10 <sup>3</sup> | $D_0^{c}$ 153    | <i>b</i> 0 <sup>d</sup><br>8.67 | $h^{e}$<br>0.242        | Н <sup>е</sup><br>3.25        | $\phi^{f}$                  |                                  |
| Model<br>P2 | $C_{e^{-}}^{\text{inj}}$<br>7.25 × 10 <sup>41</sup>     | $\gamma_{e^-}^{1,\rm inj}$ 3.08       |                                 |                          | $E_{\rm br}^{\rm inj}$<br>39.3  | $\gamma_{e^-}^{2,\rm inj}$ 2.66 | $C_{e^+}^{\text{inj}_{b}}$<br>3.61 × 10 <sup>40</sup> | $\gamma_{e^+}^{\rm inj}$<br>3.22 | $\frac{C_{\rm s}^{\rm injb}}{3.54 \times 10^{38}}$ | $\gamma_{\rm s}^{\rm inj}$<br>1.84 | $E_{\rm cut}^{\rm inj}$<br>1.68 × 10 <sup>3</sup> | $D_0^{c}$<br>166 | $b_0^{d}$<br>7.04               | h <sup>e</sup><br>0.205 | <i>Н</i> <sup>е</sup><br>3.60 | $\phi_{e^{-}}^{f}$ 1.30     | $\phi_{e^+}{}^{\mathrm{f}}$ 1.02 |



#### A2b:考虑到有大尺度磁场时,宇宙线扩散系数表现出高度的各向异性,利 用一个1维扩散模型分析宇宙线正负电子的能谱和各向异性特征(刘四明、 石召东)

| Model<br>M  | $C_{e^{-}}{}^{a}$<br>1.06 × 10 <sup>3</sup>           | $\begin{array}{c} \gamma_{e^-}^1 \\ 3.35 \end{array}$ | <i>E</i> <sub>br1</sub><br>4.96 | $\frac{\gamma_{e^-}^2}{3.64}$ | <i>E</i> <sub>br2</sub><br>32.4 | $\frac{\gamma_{e^-}^3}{3.37}$           | $C_{e^+}{}^{a}$<br>163                           | $\frac{\gamma_{e^+}}{4.05}$      | C <sub>s</sub> <sup>a</sup><br>3.14               | γ <sub>s</sub><br>2.62             | $E_{\rm cut}$<br>$1.10 \times 10^3$               |                        |                                 |                         |                        | $\phi^{\mathrm{f}}$ 1.14   |                                |
|-------------|-------------------------------------------------------|-------------------------------------------------------|---------------------------------|-------------------------------|---------------------------------|-----------------------------------------|--------------------------------------------------|----------------------------------|---------------------------------------------------|------------------------------------|---------------------------------------------------|------------------------|---------------------------------|-------------------------|------------------------|----------------------------|--------------------------------|
| Model       | $C_{e^{-}}^{\mathrm{inj}\mathrm{b}}$                  | $\gamma_{e^-}^{1,\mathrm{inj}}$                       |                                 |                               | $E_{\rm br}^{\rm inj}$          | $\gamma_{e^-}^{2,\mathrm{inj}}$         | $C_{e^+}^{\text{inj}b}$                          | $\gamma_{e^+}^{\rm inj}$         | $C_{\rm s}^{\rm inj_{\rm b}}$                     | $\gamma_{\rm s}^{\rm inj}$         | $E_{\rm cut}^{\rm inj}$                           | $D_0{}^{\mathrm{c}}$   | $b_0^{d}$                       | h <sup>e</sup>          | H <sup>e</sup>         | $\phi^{\mathrm{f}}$        |                                |
| P1          | $6.04 \times 10^{41}$                                 | 3.05                                                  |                                 |                               | 41.4                            | 2.63                                    | $1.03 \times 10^{41}$                            | 3.72                             | $1.15 \times 10^{39}$                             | 2.08                               | $2.80 \times 10^{3}$                              | 153                    | 8.67                            | 0.242                   | 3.25                   | 1.28                       |                                |
| Model<br>P2 | $C_{e^-}^{\text{inj}_{b}}$<br>7.25 × 10 <sup>41</sup> | $\gamma_{e^-}^{1,\mathrm{inj}}$<br>3.08               |                                 |                               | $E_{\rm br}^{\rm inj}$<br>39.3  | $\gamma_{e^-}^{2,\mathrm{inj}}$<br>2.66 | $C_{e^+}^{\rm inj_b}$<br>3.61 × 10 <sup>40</sup> | $\gamma_{e^+}^{\rm inj}$<br>3.22 | $\frac{C_{\rm s}^{\rm inj_b}}{3.54\times10^{38}}$ | $\gamma_{\rm s}^{\rm inj}$<br>1.84 | $E_{\rm cut}^{\rm inj}$<br>1.68 × 10 <sup>3</sup> | D0 <sup>c</sup><br>166 | <i>b</i> 0 <sup>d</sup><br>7.04 | h <sup>e</sup><br>0.205 | Н <sup>е</sup><br>3.60 | $\phi_{e^{-}}^{f}$<br>1.30 | $\phi_{e^+}{}^{\rm f}$<br>1.02 |







THE ASTROPHYSICAL JOURNAL, 874:50 (12pp), 2019 March 20

© 2019. The American Astronomical Society. All rights reserved.

https://doi.org/10.3847/1538-4357/aaf392



#### **Evolution of High-energy Particle Distribution in Supernova Remnants**

Houdun Zeng<sup>(D)</sup>, Yuliang Xin, and Siming Liu<sup>(D)</sup>

Key Laboratory of Dark Matter and Space Astronomy Purple Mountain Observatory, Chinese Academy of Sciences Nanjing 210034, People's Republic of China zhd@pmo.ac.cn, liusm@pmo.ac.cn

|             |                |                |                   | The Sample of V     | sivits and Related Thys        | sical miormation                     |       |       |     |     |                                                |
|-------------|----------------|----------------|-------------------|---------------------|--------------------------------|--------------------------------------|-------|-------|-----|-----|------------------------------------------------|
| SNR Name    | Other Name     | Radius<br>(pc) | Distance<br>(Kpc) | Age<br>(kyr)        | Density<br>(cm <sup>-3</sup> ) | Shock Speed<br>(km s <sup>-1</sup> ) | Radio | X-Ray | GeV | TeV | References for Related<br>Physical Information |
| G006.4-00.1 | W28            | ~13            | ~2.0              | 40(33-150)          | $\sim 100$                     | 60-80                                | ✓     |       | 1   | ✓   | 1-4                                            |
| G008.7-00.1 | W30            | $\sim 26$      | ~4.0              | 25(15-28)           | $\sim 100$                     | 530-750                              | 1     |       | 1   |     | 5, 6                                           |
| G031.9+00.0 | 3C 391         | ~7             | ~7.2              | ~4                  | $\sim 300$                     | 620-730                              | ~     |       | 1   |     | 7-10                                           |
| G033.6+00.1 | Kes 79         | ~9.6           | ~7.0              | ~4.4-6.7            | ~3(1-5)                        | $400 \pm 5$                          | ~     |       | 1   |     | 11-13                                          |
| G034.7-00.4 | W44            | ~12.5          | ~3.0              | $\sim 20$           | $\sim 200$                     | 100-150                              | ~     |       | 1   |     | 14-16                                          |
| G043.3-00.2 | W49B           | ~5             | $\sim 10$         | ~5.7(5-6)           | $\sim$ 700                     | $\sim 400$                           | ~     |       | 1   | 1   | 17, 18                                         |
| G049.2-00.7 | W51C           | $\sim 18$      | ~4.3              | $\sim 30$           | $\sim 10$                      | $\sim 100$                           | ~     | Т     | 1   | 1   | 19-22                                          |
| G073.9+00.9 |                | $\sim 16/5.2$  | $\sim 4.0/1.3$    | ~11-12              | $\sim 10$                      | $\sim 200 - 300$                     | ~     | Т     | 1   |     | 23, 24                                         |
| G074.0-08.5 | Cygnus loop    | ~16            | $\sim 0.54$       | $\sim 14$           | ~5.0                           | 240-330                              | ~     |       | 1   |     | 25-28                                          |
| G078.2+02.1 | γ Cygni        | $\sim 17$      | ~2.0              | $\sim 8.25(6.8-10)$ | $\sim 2.5(0.1-20)$             | 700-1100                             | 1     | т     | 1   | 1   | 29, 30                                         |
| G089.0+04.7 | HB21           | $\sim 26$      | ~1.7              | ~40(36 or 45)       | ~15                            | ~125                                 | ~     | т     | 1   |     | 31-35                                          |
| G109.1-1.00 | CTB109         | $\sim 16$      | ~3.1              | ~9.0(9.0-9.2)       | ~1.1                           | $\sim 230 \pm 5$                     | ~     | т     | 1   |     | 36, 37                                         |
| G120.1+01.4 | Tycho          | ~3.3           | ~3.0              | ~0.44               | ~10/0.3                        | 4600-4800                            | ~     | ~     | 1   | 1   | 38, 39                                         |
| G132.7+01.3 | HB3            | $\sim 26.4$    | ~2.2              | ~30.0               | ~2.0                           | 303-377                              | ~     |       | 1   |     | 40-42                                          |
| G150.3+04.5 |                | ~9.4           | $\sim 0.40$       | ~1.5(0.5-5)         | ~1.0                           | <2500                                | ~     | т     | 1   |     | 43                                             |
| G160.9+02.6 | HB9            | $\sim 15$      | ~0.8              | 5.3(4-7)            | ~0.1                           | $\sim 740$                           | ~     | т     | 1   |     | 44, 45                                         |
| G166.0+04.3 |                | $\sim 26$      | ~4.5              | 24.0                | ~0.01                          | ~680                                 | 1     |       | 1   |     | 46, 47                                         |
| G180.0-01.7 | S147           | ~38            | ~1.3              | 30(20-100)          | $\sim 250(100-500)$            | $\sim 500$                           | 1     |       | 1   |     | 48, 49                                         |
| G189.1+03.0 | IC 443         | $\sim 11$      | ~1.5              | ~30                 | ~140                           | 60-100                               | ~     |       | 1   | 1   | 50-52                                          |
| G205.5+0.50 | Monoceros      | ~63.36         | $\sim 1.98$       | $\sim 30$           | ~3.6                           | $\sim 50$                            | ~     |       | 1   |     | 53-55                                          |
| G260.4-03.4 | Puppis A       | $\sim 15$      | ~2.2              | 4.45(3.75-5.20)     | ~4.0                           | 700-2500                             | ~     |       | 1   | Т   | 56-59                                          |
| G266.2-01.2 | RX J0852-4622  | ~13            | $\sim 0.75$       | 2.7(1.7-4.3)        | ~3.8                           | $\sim 3000$                          | ~     | ~     | 1   | 1   | 60, 61                                         |
| G296.5+10.0 |                | $\sim 26$      | ~2.1              | $\sim 10.0$         | ~13.0                          | <1000                                | ~     |       | 1   |     | 62, 63                                         |
| G304.6+00.1 | Kes 17         | $\sim 10$      | $\sim 10$         | 4.2(2-5.2)          | $\sim 10$                      | 150-200                              | 1     | Т     | ✓   |     | 64, 65                                         |
| G315.4-02.3 | RCW 86         | $\sim 15$      | ~2.5              | $\sim 1.8$          | ~0.1-2.0                       | 700-2000                             | ~     | ~     | ✓   | 1   | 66-68                                          |
| G326.3-01.8 | MSH 15-56      | $\sim 22.2$    | ~4.1              | ~10.0(10-16.5)      | $\sim 0.1/1.0$                 | 500-860                              | ~     |       | 1   |     | 67, 69, 70                                     |
| G327.6+14.6 | SN 1006        | ~9.0           | ~2.2              | $\sim 1.0$          | $\sim 0.085$                   | 3200-5800                            | ~     | ~     | 1   | ~   | 71, 72                                         |
| G332.4-00.4 | RCW 103        | ~5             | ~3.3              | $\sim 2.0$          | $\sim 10$                      | $\sim 1100$                          | ~     |       | 1   |     | 73-75                                          |
| G337.0-00.1 | CTB 33         | $\sim 2.55$    | $\sim 11.0$       | $\sim 5.0$          | ~60                            | <200                                 | ~     |       | 1   |     | 76–78                                          |
| G347.3-00.5 | RX 1713.7-3946 | $\sim 10$      | $\sim 1.0$        | $\sim 1.6$          | ~0.01                          | $\sim 5000$                          | 1     | ~     | ✓   | 1   | 78-81                                          |
| G348.5+00.1 | CTB 37A        | $\sim 10$      | ~7.9              | $\sim 30$           | $\sim 100$                     | 75-100                               | 1     | Т     | 1   | 1   | 82-86                                          |
| G348.7+00.3 | CTB 37B        | $\sim 20$      | ~13.2             | $\sim 5$            | $\sim 10/0.5$                  | $\sim 800$                           | 1     | Т     | 1   | 1   | 85-88                                          |
| G349.7+00.2 |                | ~3.3           | ~11.5             | $\sim 2.8$          | ~35.0                          | 700-900                              | ~     | Т     | ~   | ~   | 89-92                                          |
| G353.6-00.7 | Hess J1731-347 | $\sim 14.0$    | ~3.2              | $\sim 2-6$          | $\sim 0.01$                    | $\sim 2100$                          | ~     | ~     | ~   | ~   | 93, 94                                         |
| G359.1-00.5 | Hess J1745-303 | $\sim 16.0$    | ~4.6              | $\sim 70$           | $\sim 100$                     | $\sim 300$                           | ~     | Т     | 1   | 1   | 95-98                                          |

#### Table 1 The Sample of SNRs and Related Physical Information



| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | =                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Solute Name $\alpha$ $C^{-1}G_{eV}$ $e^{-1}G_{eV}$ <th><u>c</u><sup>2</sup></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>c</u> <sup>2</sup> |
| W30       1.63±2617       0.24±2633       2.06       >4.29       1.86±2613       49.69±687       736       100 $\frac{6.0}{7}$ 3C391       1.99±685       1.15±614       1.86       >3.81       2.31±626       49.69±687       736       100 $\frac{6.0}{7}$ Kes79 <sup>c</sup> 2.00±688       NA $E_{p,cat}$ 1.07±618       1.70±688       49.49±681       21.3       100.0 $\frac{422}{24}$ W44       1.66±604       0.73±689       1.23       1.87±619       2.28±608       49.43±601       1480       200 $\frac{444}{44}$ W49B       1.47±604       -0.21±633       1.55       3.70±613       2.40±608       49.43±609       235       700 $\frac{189}{29}$ W51C       1.56±602       0.31±608       1.64       4.39±639       2.08±608       49.43±609       201       100 $\frac{349}{29}$ G73.9+0.9 <sup>c</sup> 0.78±619       NA $E_{p,cat}$ 0.96±609       1.57±608       49.3±601       393       10 $\frac{224}{13}$ Cygnus Loop <sup>c</sup> 1.86±608       NA $E_{p,cat}$ 0.96±609       1.57±608       49.3±601       393       10 $\frac{224}{13}$ Cygni       2.00±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DF Soi<br>= 2.43 BC   |
| No. 2011       No. 2013       No. 2014       No. 2013       No. 2014       No. 2013       No. 2014       No. 2013       No. 2013       No. 2014       No. 2013       No. 2014       No. 2014       No. 2013       No. 2014 <t< td=""><td>= 0.86</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 0.86                |
| Lock       Lock <thlock< th="">       Lock       Lock</thlock<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CT                    |
| Restrict       2.05 $\pm$ [0.08       FAT $E_{p,cat}$ 1.05 $\pm$ [0.01       49.47 $\pm$ [0.01       2.15       1000 $\frac{74}{24}$ W44       1.60 $\pm$ [0.01       0.73 $\pm$ [0.03       1.23       1.87 $\pm$ 0.01       2.28 $\pm$ 0.03       49.43 $\pm$ 0.01       1480       200 $\frac{44.4}{48}$ W49B       1.47 $\pm$ 0.04       -0.21 $\pm$ 0.31       1.55       3.70 $\pm$ 0.13       2.40 $\pm$ 0.05       49.43 $\pm$ 0.01       235       700 $\frac{18.3}{20}$ W51C       1.56 $\pm$ 0.02       0.31 $\pm$ 0.05       1.64       4.39 $\pm$ 0.39       2.08 $\pm$ 0.03       49.43 $\pm$ 0.01       708       100 $\frac{97.7}{20}$ W51C       1.64 $\pm$ 0.02       0.32 $\pm$ 0.05       1.57       >5.78       2.02 $\pm$ 0.05       49.34 \pm0.01       100 $\frac{49.7}{20}$ W51C <sup>h</sup> 1.64 $\pm$ 0.02       0.32 $\pm$ 0.05       1.57       >5.78       2.02 $\pm$ 0.05       49.34 \pm0.04       393       10 $\frac{71.4}{13}$ Cygnus Loop <sup>6</sup> 1.64 $\pm$ 0.02       NA $E_{p,cat}$ 0.96 \pm 0.09       1.57 \pm 0.05       49.34 \pm 0.04       393       10 $\frac{71.4}{13}$ Cygnus Loop <sup>6</sup> 1.86 \pm 0.08       NA $E_{p,cat}$ 0.96 \pm 0.08       1.71 \pm 0.06       49.34 \pm 0.04       393       10 <td< td=""><td> RX</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RX                    |
| W44       1.50 $\pm_{0.01}$ 0.7 $\pm_{0.09}$ 1.2.3       1.67 $\pm_{0.09}$ 2.22 $\pm_{0.01}$ 49.42 $\pm_{0.01}$ 1480       2.00 $\frac{14}{48}$ W49B       1.47 $\pm_{0.01}^{0.01}$ $-0.21\pm_{0.33}^{0.01}$ 1.55       3.70\pm_{0.13}^{0.11}       2.40\pm_{0.02}^{0.02}       2.35       700 $\frac{18}{30}$ W51C       1.55\pm_{0.02}^{0.02}       0.31\pm_{0.08}^{0.08}       1.64       4.39\pm_{0.39}^{0.39}       2.08\pm_{0.03}^{0.08}       49.43\pm_{0.01}^{0.02}       201       100 $\frac{907}{79}$ W51C       1.64\pm_{0.02}^{0.02}       0.32\pm_{0.03}^{0.08}       1.57       >5.78       2.02\pm_{0.03}^{0.08}       49.34\pm_{0.04}^{0.01}       393       10 $\frac{12.4}{19}$ G73.9+0.9°       0.78\pm_{0.19}^{0.19}       NA $E_{p,cut}$ 0.96\pm_{0.09}^{0.09}       1.57\pm_{0.09}^{0.09}       49.34\pm_{0.01}^{0.01}       393       10 $\frac{21.4}{13}$ Cygnus Loop°       1.86\pm_{0.08}^{0.08}       NA $E_{p,cut}$ 1.09\pm_{0.10}^{0.10}       1.46\pm_{0.09}^{0.09}       49.32\pm_{0.01}^{0.09}       197       5.0 $\frac{20.5}{20.5}$ $\gamma$ Cygni       2.00\pm_{0.05}^{0.01}       3.17\pm_{0.18}^{0.18}       2.63       >4.97       1.78\pm_{0.09}^{0.09}       61.5       2.5 $\frac{21.4}{21.8}$ <td< td=""><td>- 2.08 CT</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 2.08 CT             |
| W49B $1.47_{-0.61}$ $-0.21_{-0.21}$ $1.53$ $5.00_{-0.61}$ $2.44_{-0.66}$ $49.42_{-0.62}$ $2.33$ $NO$ $\frac{7}{20}$ W51C $1.56_{-0.02}^{+0.02}$ $0.31_{-0.01}^{+0.08}$ $1.64$ $4.39_{-0.33}^{+0.33}$ $2.08_{-0.06}^{+0.06}$ $49.83_{-0.01}^{+0.01}$ $708$ $100$ $\frac{97}{20}$ W51C $1.64_{-0.022}^{+0.020}$ $0.32_{-0.05}^{+0.08}$ $1.57$ $>5.78$ $2.02_{-0.06}^{+0.06}$ $49.83_{-0.01}^{+0.01}$ $100$ $\frac{349}{20}$ G73.9+0.9° $0.78_{-0.01}^{+0.01}$ $NA$ $E_{p.cut}$ $0.96_{-0.06}^{+0.06}$ $1.57_{-0.05}^{+0.02}$ $49.34_{-0.04}^{+0.01}$ $393$ $10$ $\frac{21.4}{13}$ Cygnus Loop° $1.86_{-0.08}^{+0.08}$ $NA$ $E_{p.cut}$ $1.09_{-0.16}^{+0.01}$ $1.44_{-0.02}^{+0.02}$ $61.5$ $2.5$ $\frac{21.8}{18}$ HB21° $2.00_{-0.05}^{+0.05}$ $3.17_{-0.17}^{+0.18}$ $2.63$ $>4.97$ $1.78_{-0.07}^{+0.02}$ $61.5$ $2.5$ $\frac{21.8}{18}$ HB21° $1.20_{-0.11}^{+0.01}$ $NA$ $E_{p.cut}$ $0.69_{-0.06}^{+0.06}$ $1.71_{-0.01}^{+0.01}$ $49.42_{-0.01}^{+0.01}$ $564$ $15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - CT                  |
| WSLC       1.50 $\pm 367$ 0.31 $\pm 368$ 1.64       4.39 $\pm 3639$ 2.08 $\pm 363$ 49.85 $\pm 3631$ 708       100 $\frac{1}{129}$ WS1C       1.64 $\pm 6027$ 0.32 $\pm 6037$ 1.57       >5.78       2.02 $\pm 6037$ 49.85 $\pm 3631$ 708       100 $\frac{149}{19}$ G73.9+0.9°       0.78 $\pm 619$ NA $E_{p,cut}$ 0.96 $\pm 6097$ 1.57 $\pm 6057$ 49.34 $\pm 6041$ 393       10 $\frac{224}{13}$ Cygnus Loop <sup>6</sup> 1.86 $\pm 6087$ NA $E_{p,cut}$ 0.96 $\pm 6097$ 1.46 $\pm 6097$ 49.34 $\pm 6041$ 393       10 $\frac{224}{13}$ Cygnus Loop <sup>6</sup> 1.86 $\pm 6087$ NA $E_{p,cut}$ 1.09 $\pm 619$ 1.46 $\pm 6097$ 49.34 $\pm 6041$ 393       10 $\frac{224}{13}$ HB21 <sup>c</sup> 1.20 $\pm 6057$ 3.17 $\pm 617$ 2.63       >4.97       1.78 \pm 6087       50.25 \pm 6097       61.5       2.5 $\frac{21.6}{15}$ HB21 <sup>c</sup> 1.20 \pm 612       NA $E_{p,cut}$ 0.69 \pm 6085       1.71 \pm 6097       49.42 \pm 6097       564       15 $\frac{3.62}{13}$ Tycho       2.15 \pm 6087       3.28       >4.82       1.47 \pm 6097       49.84 \pm 6121       19.6 <td>= 1.00</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = 1.00                |
| WS1C <sup>+</sup> 1.64±2632       0.32±2635       1.57       >>.78       2.02±2635       49.72±363       201       100 $\frac{-1}{79}$ G73.9+0.9 <sup>c</sup> 0.78±010       NA $E_{p,cat}$ 0.96±036       1.57±016       49.34±004       393       10 $\frac{724}{13}$ Cygnus Loop <sup>c</sup> 1.86±036       NA $E_{p,cat}$ 0.96±036       1.57±016       49.34±004       393       10 $\frac{724}{13}$ Cygnus Loop <sup>c</sup> 1.86±037       NA $E_{p,cat}$ 1.09±016       1.46±003       48.72±002       197       5.0 $\frac{705}{20}$ $\gamma$ Cygni       2.00±035       3.17±017       2.63       >4.97       1.78±007       50.25±002       61.5       2.5 $\frac{21.6}{18}$ HB21 <sup>c</sup> 1.20±012       NA $E_{p,cat}$ 0.69±025       1.71±020       49.42±020       564       15 $\frac{362}{23}$ CTB109       1.94±026       2.66±023       3.28       >4.82       1.47±025       49.84±012       19.6       1.1 $\frac{305}{8}$ Tycho       2.15±007       3.36±011       4.06±087       >5.04       2.15±004       49.01±088       23.5       0.3 $\frac{35}{13}$ Tycho </td <td>= 2.06</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = 2.06                |
| G73.9+0.9°         0.78 $\pm_{0.01}^{23}$ NA $E_{p,out}$ 0.96 $\pm_{0.03}^{23}$ 1.57 $\pm_{0.03}^{233}$ 49.34 $\pm_{0.03}^{2332}$ 393         10 $\frac{1}{11}$ Cygnus Loop*         1.86 $\pm_{0.03}^{2008}$ NA $E_{p,out}$ 1.09 $\pm_{0.10}^{210}$ 1.46 $\pm_{0.03}^{2003}$ 49.34 $\pm_{0.03}^{2332}$ 197         5.0 $\frac{233}{20}$ $\gamma$ Cygni         2.00 $\pm_{0.05}^{2008}$ 3.17 $\pm_{0.17}^{2017}$ 2.63         >4.97         1.78\pm_{0.05}^{2008}         61.5         2.5 $\frac{235}{18}$ HB21°         1.20 $\pm_{0.12}^{0112}$ NA $E_{p,out}$ 0.69 $\pm_{0.03}^{4008}$ 1.71 $\pm_{0.01}^{4008}$ 49.42 $\pm_{0.01}^{4001}$ 564         15 $\frac{362}{22}$ CTB109         1.94 \pm_{0.02}^{4008}         2.66 \pm_{0.03}^{4013}         3.28         >4.82         1.47 \pm_{0.03}^{4012}         49.84 \pm_{0.12}^{4012}         19.6         1.1 $\frac{209}{8}$ Tycho         2.15 \pm_{0.02}^{4027}         3.37 \pm_{0.12}^{4012}         4.14 \pm_{0.03}^{4036}         >5.04         2.15 \pm_{0.04}^{40012}         49.82 \pm_{0.01}^{4012}         0.0.0 $\frac{35}{3}$ Tycho         2.16 \pm_{0.027}^{4027}         4.06 \pm_{0.027}^{4027}         4.93         2.29 \pm_{0.04}^{4048} <td>= 1.20 G3</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 1.20 G3             |
| Cygnus Loop*         1.86±000         NA $E_{p,cat}$ 1.09±010         1.46±000         48.72±000         197         5.0 $\frac{A3}{20}$ $\gamma$ Cygni         2.00±005         3.17±017         2.63         >4.97         1.78±005         50.25±000         61.5         2.5 $\frac{214}{18}$ HB21*         1.20±012         NA $E_{p,cat}$ 0.69±005         1.71±001         49.42±001         564         15 $\frac{36}{23}$ CTB109         1.94±000         2.66±008         3.28         >4.82         1.47±017         49.84±012         19.6         1.1 $\frac{200}{8}$ Tycho         2.15±007         3.37±017         4.14±008         >5.04         2.15±004         49.01±008         23.5         0.3 $\frac{53}{3}$ Tycho         2.16±007         3.36±011         4.06±007         >4.93         2.29±008         48.78±007         92.2         10.0 $\frac{43}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = 1.72 He             |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = 1.03 Hes            |
| HB21°         1.20 $\pm_{0.01}^{+0.12}$ NA $E_{p,cut}$ 0.69 $\pm_{0.03}^{+0.03}$ 1.71 $\pm_{0.01}^{+0.01}$ 49.42 $\pm_{0.01}^{+0.01}$ 564         15 $\frac{322}{23}$ CTB109         1.94 $\pm_{0.00}^{+0.03}$ 2.66 $\pm_{0.03}^{-0.03}$ 3.2.8         >4.82         1.47 $\pm_{0.03}^{+0.03}$ 49.84 $\pm_{0.12}^{0.12}$ 19.6         1.1 $\frac{200}{8}$ Tycho         2.15 $\pm_{0.002}^{+0.02}$ 3.37 $\pm_{0.12}^{+0.12}$ 4.14 $\pm_{0.000}^{+0.000}$ >5.04         2.15 $\pm_{0.010}^{+0.000}$ 23.5         0.3 $\frac{55}{33}$ Tycho         2.16 $\pm_{0.002}^{+0.02}$ 3.36 $\pm_{0.11}^{+0.11}$ 4.06 $\pm_{0.007}^{-0.07}$ >4.9.3         2.29 \pm_{0.010}^{+0.004}         48.78 \pm_{0.007}^{+0.07}         92.2         10.0 $\frac{43}{33}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = 1.31                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = 1.57                |
| Tycho $2.15_{-0.07}^{+0.07}$ $3.37_{-0.17}^{+0.12}$ $4.14z_{-0.09}^{-0.09}$ > 5.04 $2.15z_{-0.04}^{+0.01}$ $49.01z_{-0.08}^{+0.08}$ $23.5$ $0.3$ $\frac{55}{15}$ Tycho $2.16z_{-0.07}^{+0.07}$ $3.36z_{-0.11}^{+0.11}$ $4.06z_{-0.07}^{+0.07}$ > 4.93 $2.29z_{-0.04}^{+0.04}$ $48.78z_{-0.07}^{+0.07}$ 92.2 $10.0$ $\frac{44}{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = 2.61                |
| Tycho $2.16^{\pm 0.07}_{\pm 0.02}$ $3.36^{\pm 0.11}_{\pm 0.11}$ $4.06^{\pm 0.07}_{\pm 0.07}$ >4.93 $2.29^{\pm 0.04}_{\pm 0.01}$ $48.78^{\pm 0.07}_{\pm 0.07}$ 92.2 10.0 $\frac{44}{33}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.57                  |
| 164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.26                  |
| HB3° $1.84\pm0.16$ NA $E_{p,cut}$ $1.08\pm0.17$ $1.04\pm0.04$ $50.04\pm0.03$ $6.4$ $2.0$ $\frac{10}{19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = 0.86                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 0.96                |
| ${\rm HB9^c} \qquad 1.75^{\pm 0.32}_{-0.34} \qquad {\rm NA} \qquad E_{\rm p, cut} \qquad 1.11^{\pm 0.43}_{-0.40} \qquad 0.61^{\pm 0.07}_{-0.08} \qquad 50.25^{\pm 0.08}_{-0.08} \qquad 0.07 \qquad 0.1 \qquad \frac{73}{12} = 1.11^{\pm 0.43}_{-0.40} \qquad 0.61^{\pm 0.07}_{-0.08} \qquad 0.07 \qquad 0.1 \qquad \frac{73}{12} = 1.11^{\pm 0.43}_{-0.40} \qquad 0.61^{\pm 0.07}_{-0.08} \qquad 0.07 \qquad 0.1 \qquad \frac{73}{12} = 1.11^{\pm 0.43}_{-0.40} \qquad 0.61^{\pm 0.07}_{-0.08} \qquad 0.07 \qquad 0.1 \qquad \frac{73}{12} = 1.11^{\pm 0.43}_{-0.40} \qquad 0.61^{\pm 0.07}_{-0.08} \qquad 0.07 \qquad 0.1 \qquad \frac{73}{12} = 1.11^{\pm 0.43}_{-0.40} \qquad 0.61^{\pm 0.07}_{-0.08} \qquad 0.07 \qquad 0.1 \qquad \frac{73}{12} = 1.11^{\pm 0.43}_{-0.40} \qquad 0.61^{\pm 0.07}_{-0.08} \qquad 0.07 \qquad 0.1 \qquad \frac{73}{12} = 1.11^{\pm 0.43}_{-0.40} \qquad 0.61^{\pm 0.07}_{-0.08} \qquad 0.07 \qquad 0.1 \qquad \frac{73}{12} = 1.11^{\pm 0.43}_{-0.40} \qquad 0.61^{\pm 0.07}_{-0.08} \qquad 0.07 \qquad 0.1 \qquad \frac{73}{12} = 1.11^{\pm 0.43}_{-0.40} \qquad 0.61^{\pm 0.07}_{-0.08} \qquad 0.07 \qquad 0.1 \qquad \frac{73}{12} = 1.11^{\pm 0.43}_{-0.40} \qquad 0.61^{\pm 0.07}_{-0.08} \qquad 0.07 \qquad 0.1 \qquad \frac{73}{12} = 1.11^{\pm 0.43}_{-0.40} \qquad 0.61^{\pm 0.07}_{-0.08} \qquad 0.07 \qquad 0.1 \qquad \frac{73}{12} = 1.11^{\pm 0.43}_{-0.40} \qquad 0.07 \qquad 0.1 \qquad 0.$ | = 0.61                |
| G166.0+4.3 <sup>c</sup> 1.32 <sup>+0.17</sup> <sub>-0.18</sub> NA $E_{p,cut}$ 1.87 <sup>+0.14</sup> <sub>-0.15</sub> 0.57 <sup>+0.24</sup> <sub>-0.24</sub> 50.92 <sup>+0.25</sup> <sub>-0.25</sub> 0.12 0.01 $\frac{6.92}{5}$ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 1.38                |
| G166.0+4.3° $1.26^{\pm0.17}_{-0.18}$ NA $E_{p,cut}$ $1.18^{\pm0.16}_{-0.16}$ $1.62^{\pm0.10}_{-0.10}$ $49.18^{\pm0.07}_{-0.07}$ 717 $10.0$ $\frac{7.70}{5}$ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = 1.54                |
| <b>S</b> 147 1.36 <sup>+0.06</sup> <sub>-0.06</sub> -0.14 <sup>+0.12</sup> <sub>-0.13</sub> 0.09 >3.86 2.77 <sup>+0.09</sup> <sub>-0.09</sub> 47.71 <sup>+0.05</sup> <sub>-0.05</sub> 2.7 × 10 <sup>8</sup> 250 $\frac{173}{17}$ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = 1.02                |
| $1.53^{\pm 0.11}_{-0.11}$ $0.51^{\pm 0.12}_{-0.12}$ $3.57$ >4.65 $1.03^{\pm 0.05}_{-0.05}$ $49.94^{\pm 0.04}_{-0.04}$ $31.6$ $1.0$ $\frac{19.8}{17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 1.16                |
| 1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = 1.44                |
| $\frac{1}{16} Monoceros Loop 1.63^{\pm 0.02}_{-0.02} 0.74^{\pm 0.11}_{-0.11} 2.97 > 5.77 1.31^{\pm 0.03}_{-0.03} 50.29^{\pm 0.03}_{-0.03} 224 3.6 \frac{125}{16} = 1.53 \pm 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = 1.63                |
| Puppis A $2.08^{\pm0.02}_{-0.02}$ $3.23^{\pm0.48}_{-0.56}$ $2.50$ >4.57 $1.97^{\pm0.02}_{-0.02}$ $49.53^{\pm0.04}_{-0.04}$ 500 $4.0$ $\frac{48.8}{30}_{-0.04}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = 1.46                |
| $\frac{1}{10000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = 1.73                |
| $\frac{15}{\text{RX J0852.4622}} 1.33^{\pm 0.05}_{-0.05} 1.13^{\pm 0.18}_{-0.16} 4.38^{\pm 0.06}_{\pm 0.06} > 5.15 1.04^{\pm 0.04}_{-0.04} 49.70^{\pm 0.04}_{-0.04} 2.6 0.01 \frac{166}{166} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = 1.19                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 0.58                |
| Kes 17 <sup>d</sup> $2.04_{-0.12}^{+0.12}$ NA $3.01$ > $4.20$ $1.77_{-0.16}^{+0.16}$ $50.39_{-0.13}^{+0.13}$ $7.6$ $10.0$ $\frac{106}{10.6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = 0.35                |
| $\frac{1}{3}$ RCW 86 2.26 <sup>+0.00</sup> / <sub>3</sub> 3.92 <sup>+0.00</sup> / <sub>3</sub> 4.42 <sup>+0.04</sup> / <sub>2</sub> >5.23 1.44 <sup>+0.02</sup> / <sub>4</sub> 4.982 <sup>+0.00</sup> / <sub>3</sub> 15.3 0.01 31.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = 1.43                |
| $\frac{1}{22} = \frac{1}{1} \frac{1}{100} \frac{1}{$                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = 1 44                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 1.14                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.60                  |

|                              |                               |                                       |                                          | (Continued                       | )                               |                                    |                    |                            |                             |
|------------------------------|-------------------------------|---------------------------------------|------------------------------------------|----------------------------------|---------------------------------|------------------------------------|--------------------|----------------------------|-----------------------------|
| Source Name                  | α                             | $\log_{10} \frac{E_{br}}{\text{GeV}}$ | $\log_{10} \frac{E_{e,cut}}{\text{GeV}}$ | $log_{10} \frac{E_{p,cut}}{GeV}$ | $\log_{10} \frac{B}{\mu G}$     | $\log_{10} \frac{W_p}{\text{erg}}$ | $\frac{W_B}{W_e}$  | $\frac{n}{\text{cm}^{-3}}$ | $\frac{\chi^2}{\text{NDF}}$ |
| RCW 103 <sup>d</sup>         | $2.12_{-0.07}^{+0.07}$        | NA                                    | 3.92                                     | >4.77                            | $1.44^{+0.08}_{-0.08}$          | $50.04^{+0.06}_{-0.06}$            | 0.41               | 10                         | $\frac{1.1}{7} = 0.16$      |
| CTB 33                       | $1.89_{-0.26}^{+0.29}$        | $1.02\substack{+0.44\\-0.45}$         | 3.46                                     | >4.66                            | $1.50\substack{+0.09\\-0.08}$   | $49.50\substack{+0.07 \\ -0.07}$   | 0.17               | 600                        | $\frac{6.92}{5} = 1.38$     |
| RX J1713.7-3946 <sup>a</sup> | $1.81\substack{+0.02\\-0.02}$ | $3.10_{-0.05}^{+0.05}$                | $4.89\substack{+0.004\\-0.004}$          | >5.57                            | $1.29\substack{+0.004\\-0.004}$ | $49.46\substack{+0.03\\-0.03}$     | 6.0                | 0.01                       | $\frac{445}{240} = 1.85$    |
| CTB 37A                      | $1.47\substack{+0.02\\-0.02}$ | $0.36\substack{+0.19\\-0.17}$         | 1.0                                      | >5.96                            | $2.40_{-0.10}^{+0.12}$          | $49.82\substack{+0.02\\-0.02}$     | 607                | 100                        | $\frac{23.4}{16} = 1.46$    |
| CTB 37B                      | $1.49\substack{+0.11\\-0.11}$ | $2.40_{-0.34}^{+0.33}$                | 0.81                                     | >5.34                            | $2.84_{-0.15}^{+0.15}$          | $50.51\substack{+0.04\\-0.04}$     | $1.04 \times 10^5$ | 10                         | $\frac{15.6}{14} = 1.11$    |
| CTB 37B                      | $1.58\substack{+0.07\\-0.07}$ | $3.06\substack{+0.19\\-0.20}$         | 2.47                                     | >5.32                            | $1.97\substack{+0.06\\-0.06}$   | $51.60\substack{+0.04\\-0.04}$     | 28.3               | 0.5                        | $\frac{14.1}{14} = 1.00$    |
| G349.7+0.2                   | $2.06\substack{+0.13\\-0.12}$ | $2.82\substack{+0.30\\-0.38}$         | 2.70                                     | >5.00                            | $2.00\substack{+0.12\\-0.12}$   | $50.09\substack{+0.04\\-0.04}$     | 1.30               | 35                         | $\frac{5.2}{10} = 0.52$     |
| Hess J1731-347               | $1.86\substack{+0.04\\-0.04}$ | $3.65_{-0.10}^{+0.10}$                | $4.27\substack{+0.02\\-0.02}$            | >5.19                            | $1.46\substack{+0.02\\-0.02}$   | $49.42\substack{+0.04\\-0.04}$     | 45.1               | 0.01                       | $\frac{283.9}{322} = 0.88$  |
| Hess J1745-303               | $1.64\substack{+0.04\\-0.04}$ | $0.52\substack{+0.20\\-0.18}$         | 2.03                                     | >5.37                            | $1.66\substack{+0.08\\-0.08}$   | $49.53\substack{+0.08\\-0.08}$     | 167                | 100                        | $\frac{3.62}{8} = 0.45$     |

Table 2





MNRAS **482**, 5268–5274 (2019) Advance Access publication 2018 November 19

Global constraints on diffusive particle acceleration by strong non-relativistic shocks

#### Yiran Zhang<sup>1,2\*</sup> and Siming Liu<sup>1,2\*</sup>



doi:10.1093/mnras/sty3136

### A1a: 年龄在几千年的遗迹伽玛射线辐射可以用谱指数为2.2的电子辐射拟合,年龄在1万年以上的遗迹伽玛谱可以用谱指数为2.65的质子辐射拟合



A1a: 星暴星系的伽玛射线能谱可以用谱指数为2.4的质子辐射拟合, 也可以用谱指数为2.55和2.22的双质子分量拟合.



#### A1b:利用一个TeV辐射由轻子过程主导的年轻超新星遗样本(总共约10 个源),分析年轻遗迹中高能电子分布函数的演化规律(刘四明、张潇)



#### A1b:利用一个TeV辐射由轻子过程主导的年轻超新星遗样本(总共约10个 源),分析年轻遗迹中高能电子分布函数的演化规律(刘四明、张潇、曾厚 敦)

THE ASTROPHYSICAL JOURNAL, 874:98 (6pp), 2019 March 20

© 2019. The American Astronomical Society. All rights reserved.

https://doi.org/10.3847/1538-4357/ab09fe



#### Is Supernova Remnant Cassiopeia A a PeVatron?

Xiao Zhang<sup>1,2</sup><sup>(b)</sup> and Siming Liu<sup>3</sup><sup>(b)</sup>





29.70\* Galactic Longitude

-00.20

-00.22°

-00.24°

-00.26°

-00.28°

29.74

332.15\* 332.05 332.00° 331.95° 331.904 Galactic Longitude

-00.20° 1 arcmin 331.85° 117.40°

12.26° 12.24° 12.22° 12 28! Galactic Longitude

1 arcmin

12.20

1 arcmir

116.60

Galactic Longitude

#### Consider different:

Progenitor mass
 Stellar wind and proper motion
 Magnetic field(direction and strength)





Stellar wind density and magnetic Supernova remnant Supernova remnant

#### Radio morphology form simulatior

Radio morphology from observation



#### SNR evolves in normal and strong magmatic fields

1)The strong magnetic field of 1 mG will align the motion of ejecta in a way similar to a jet.

2)Most of ejecta will propagate parallel to the magnetic field. And the ejecta propagating perpendicular to the magnetic field will be reflected and generate strong reverse shock.

3)When the reverse shock converge in the explosion center, it will more or less flow along the central magnetic field.





#### 具体研究任务的完成时间

| 年\月  | 1   | 2 | 3 | 4                | 5 | 6   | 7   | 8 | 9 | 10  | 11  | 12  |
|------|-----|---|---|------------------|---|-----|-----|---|---|-----|-----|-----|
| 2018 |     |   |   |                  |   |     |     |   |   |     | A1a |     |
| 2019 | A1b |   |   | A1c              |   | A2a |     |   |   | A2b |     | C1  |
| 2020 |     |   |   | A2c, A2d         |   |     |     |   |   | A3a |     | C2  |
| 2021 |     |   |   | A3b              |   | B1  | A4a |   |   |     |     | A4b |
| 2022 |     |   |   | A4c              |   |     | C3a |   |   |     |     | C3b |
| 2023 |     |   |   | B2,A2e,C4,<br>C5 |   |     |     |   |   |     |     |     |

### 第三课题组年度考核指标

#### 论文指标

| 研究方向 | 宇宙线的<br>加速和传<br>播 | 超新星遗<br>迹和脉冲<br>星的多波<br>段研究 | 河外宇宙<br>射线源的<br>相关研究 | 宇宙线的<br>多波段观<br>测研究 |
|------|-------------------|-----------------------------|----------------------|---------------------|
| 2019 | 2                 | 2+6                         | 1+1                  | 1                   |
| 2020 | 2                 | 2                           | 2                    | 0                   |
| 2021 | 2                 | 2                           | 1                    | 1                   |
| 2022 | 2                 | 2                           | 2                    | 0                   |
| 2023 | 2                 | 2                           | 1                    | 1                   |
| 汇总   | 10                | 10                          | 7                    | 3                   |

每年做一次国际会议报告,组织一次会议,其中国内会议4 次,国际会议1次;

### 2019年发表的文章

- 1. Zeng, Houdun; Xin, Yuliang; Liu, Siming; Evolution of high-energy particle distribution in supernova remnants. ApJ, 874, 50 (2019)
- 2. Zhang, Xiao; Liu, Siming; Is Supernova Remnant Cassiopia A a PeVtron? ApJ, 874, 98 (2019)
- **3. Shi, Zhaogong**; Liu, Siming; Origin of cosmic ray electrons and positrons. MNRAS, 485, 3869 (2019)
- **4. Bao, Yiwei; Liu, Siming;** Chen, Yang; On the gamma-ray nebula of Vela pulsar-I. constraining diffusion coefficient within the TeV nebula. ApJ, 877, 54 (2019)
- **5. Zhang, Xiao; Liu, Siming;** Electron acceleration in middle age shell-type gamma-ray supernova remnants. ApJ, 876, 24 (2019)
- **6. Zhang, Yiran**; Liu, Siming; Global constraints on diffusive particle acceleration by strong non-relativistic shocks. MNRAS,482,5268 (2019)
- 7. 张轶然, 刘四明; 宇宙线的超新星遗迹起源, 天文学报
- **8. Zhu, Hui**; Slane, Patrick; Raymond, John; **Tian Wenwu**; Dust destruction in non-radiative shocks. ApJ, accepted
- **9. Tian, Wenwu, Zhu, Hui** et al. The kinematic distance of SNR G16.7+0.1 and G15.9+0.2 by analyzing HI absorption spectra. PASP, accepted
- **10.Wu Dan; Zhang Mengfei**; How does the strong surrounding magnetic field influence the evolution of a supernova remnant? RAA, accepted
- 11. Shan, Susu; Zhu, Hui; Tian, Wenwu et al. The distance measurements of supernova remnants in the fourth Galactic quadrant. RAA, 19, 92 (2019)

总结

围绕宇宙线的起源和加速问题,本 课题负责研究LHAASO的宇宙线能 谱和各向异性结果,以及来自扩展 源和弥散伽马射线观测结果,项目 组按照实施方案顺利开展了第一年 的研究工作。

# Neutrinos from blazar TXS 0506+56

Chasing the anteso no quintles are been economy a th han one so its tim Ence Hanse of an astrophysical neutrin SOURCE on 115, 146, 8 147



IceCube观测到一个300TeV的中微子事件与 Blazar TXS 0506+056的多波段flare在3σ的 置信度上成协

### 传统的Photomeson (pγ) 模型



Keivani et al. 2018

### pp interaction model

Liu et al. 2019



相比于传统模型:

 1. 较高的中微子产生率 → 宇宙线质子光度降至爱丁 顿光度之下

2. 宽线区云团中被电离的电子提供康普顿光深,减少
 X射线流量,提高中微子流量

### Modelling the SED

Liu et al. 2019, PRD



s=1.6: 1 (anti-)muon event / 80 days s=2.0: 1 (anti-)muon event / 3.2 yrs

#### 星系团中的宇宙线



# in o o inton

# Fermi 9 years of data –unbinned likelihood analysis (0.2-100 GeV)



| Spatial model                                                | Photon flux<br>(×10 <sup>-9</sup> ph cm <sup>-2</sup> s <sup>-1</sup> ) | Energy flux<br>(×10 <sup>-12</sup> erg cm <sup>-2</sup> s <sup>-1</sup> ) | Power-law index                                               | TS           |
|--------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------|--------------|
| Disk                                                         | $3.14\pm0.54$                                                           | $2.52\pm0.59$                                                             | $2.65\pm0.25$                                                 | 38.9         |
| Core                                                         | $3.08\pm0.52$                                                           | $2.50\pm0.59$                                                             | $2.64\pm0.25$                                                 | 40.1         |
| Radio                                                        | $2.74\pm0.48$                                                           | $2.11\pm0.43$                                                             | $2.70\pm0.24$                                                 | 42.9         |
| X-ray                                                        | $2.39\pm0.44$                                                           | $1.70\pm0.35$                                                             | $2.81\pm0.28$                                                 | 37.2         |
| Point Source A (p <sub>center</sub> )<br>Point Source B (p1) | $\begin{array}{c} 1.94 \pm 0.42 \\ 1.92 \pm 0.43 \end{array}$           | $\begin{array}{c} 1.12 \pm 0.43 \\ 1.45 \pm 0.26 \end{array}$             | $\begin{array}{c} 3.24 \pm 0.94 \\ 2.73 \pm 0.19 \end{array}$ | 23.4<br>41.3 |
| Disk + p1                                                    | $\begin{array}{c} 2.45 \pm 0.65 \\ 0.67 \pm 0.35 \end{array}$           | $\begin{array}{c} 1.78 \pm 0.81 \\ 0.82 \pm 0.31 \end{array}$             | $\begin{array}{c} 2.78 \pm 0.53 \\ 2.30 \pm 0.26 \end{array}$ | 53.4         |
| Core + p1                                                    | $\begin{array}{c} 2.43 \pm 0.63 \\ 0.65 \pm 0.35 \end{array}$           | $\begin{array}{c} 1.82 \pm 0.76 \\ 0.80 \pm 0.30 \end{array}$             | $\begin{array}{c} 2.73 \pm 0.46 \\ 2.30 \pm 0.27 \end{array}$ | 54.3         |
| Radio + p1                                                   | $\begin{array}{c} 2.25 \pm 0.55 \\ 0.53 \pm 0.30 \end{array}$           | $\begin{array}{c} 1.66 \pm 0.49 \\ 0.75 \pm 0.30 \end{array}$             | $\begin{array}{c} 2.76 \pm 0.36 \\ 2.22 \pm 0.27 \end{array}$ | 56.5         |
| X-ray + p1                                                   | $\begin{array}{c} 1.79 \pm 0.53 \\ 0.72 \pm 0.37 \end{array}$           | $\begin{array}{c} 1.23 \pm 0.44 \\ 0.85 \pm 0.29 \end{array}$             | $\begin{array}{c} 2.81 \pm 0.28 \\ 2.33 \pm 0.27 \end{array}$ | 52.9         |
| $p_{center} + p1$                                            | $\begin{array}{c} 1.13 \pm 0.51 \\ 1.14 \pm 0.42 \end{array}$           | $0.65 \pm 1.08 \\ 1.08 \pm 0.38$                                          | $3.23 \pm 4.00$<br>$2.49 \pm 0.27$                            | 45.7         |

TABLE I. Unbinned likelihood analysis results for energy band 200 MeV-300 GeV.

#### Xi et al. 2018, PRD, arXiv:1709.08319

### Interpreting the correlation



- Changing slope, α →
   1.5
- gamma-ray data is well consistent with such a steepening
- The steepening suggests that CR escape is important in low-SFR galaxies

Zhang, Peng & Wang 2019

会议安排

- •通过每年两次的合作组会议,汇报 课题进展。
- •课题每月召开一次学术会议,邀请 项目组所有成员和专家参加,可以 视频参加。
- •3个任务组每个礼拜安排组会,根据需要邀请相关人员参加。

### 会议纪要及研究讲展

#### List of Topics

#### [DocDB Home] [New] [Search] [Last 20 Days] [List Authors] [List Topics] [List Events] [Help]

#### Cherenkov detecting [切伦柯夫探测分总体]

- Telescope Optical Testing [望远镜光学检测]
- Telescope Optics [望远镜光学]
- Telescope PMT Array [望远镜光电倍增管阵列]
- WCDA Electronics [水切伦科夫探测器电子学]
- WCDA [水切伦科夫探测器]
- WCDA动态范围扩展系统
- WFCTA Electronics [望远镜电子学]
- WFCTA [大气切伦科夫望远镜]
- 大气监测与望远镜标定

#### Collaboration Meeting [合作组会] Construction & Installation [建安工程分总体]

- Assistance & Supporting (辅助支撑)
- Civil Construction [土建]

#### Gamma Astronomy [伽马天文分总体]

- KM2A Electronics [地面粒子探测器电子学]
- KM2A-ED [电磁粒子探测器]
- KM2A-MD [缪子探测器]
- Large PMT Application [大尺寸光电倍增管应用]
- Power supply Testing [电源检测]
- Scintillator Testing [闪烁探测器检测]
- Small PMT Application [小尺寸光电倍增管应用]

#### Mechanical Engineering [机械工程]

- About ED [与ED相关]
- About MD [与MD相关]
- About WCDA [与WCDA相关]
- About WFCTA [与WFCTA相关]
- Meeting Minutes [会议纪要]
- Other Minutes [其它纪要]
- Regular Meeting Minutes [工程例会纪要]
- Technical Meeting Minutes [技术会议纪要]

#### On-site Construction [现场建设]

- 测控基地工程进展
  - 。2016年度
  - 2017年度
  - 2018年度
- 2019年度
- 。2020年度

#### • 观测基地工程进展

- 2016年度
- 2017年度
- 。2018年度
- 。2020年度

- Physics Analysis [物理分析工作组]
- Kev R&D program 「重点研发计划」
  - 1. First topic [数据的标定、模拟、重建]
  - KM2A
  - Single particle
  - WCDA
  - WCDA++
  - WFCTA calibration
  - WFCTA data
  - 2. Second topic [数据的物理分析]
    - Analysis software
    - IG (KM2A)
  - OG (WCDA)
  - Solar Physics
  - Spectrum and Anisotropy
  - · 3. Third topic [宇宙线起源的唯象研究]
    - 3D CR propagation [3D宇宙线传播]
    - 多波段研究(国台)
    - 河外宇宙射线(南大)
  - 银河系宇宙线(紫台)
  - 4. Forth topic [伽马天文的唯象研究]
- Reconstruction [重建]
- Simulation [模拟]

#### Project Manager [工程经理部]

- 代建经理部档案
- 公文档案

#### Project Office [工程办公室]

- 图文讲展报告
- 工程办周报
- 工程讲展月报

#### Publications [已发表文章] Sicence Popularizing (科普) Summer School [暑期学校] Technical Documents [技术文档] Technical Support [技术部・分总体]

- Clock Distributing [时钟分配]
- Data Acquisition [数据获取]
- Data Processing Platform [数据平台]
- General Technology 「通用技术」
- Offline Software framework [软件框架]
- Slow Control [慢控制]

会议与来访 会议文集 [proceedings] 附录文件

- [DocDB Home] [New] [Search] [Last 20 Days] [List Authors] [List Topics] [List Events] [Help]
- 2021年度
- - - 。2019年度

  - 观测基地航拍视频

。2021年度



#### **Document List by Topic**

[DocDB Home] [New] [Search] [Last 20 Days] [List Authors] [List Topics] [List Events] [Help] These documents on third topic [第三课题] (subtopic of Key R&D program [重点研发计划]) and sub-topics are available:

| lhaaso-doc-#  | Title                                                                                   | Author(s)        | Topic(s)                                  | Last Updated |
|---------------|-----------------------------------------------------------------------------------------|------------------|-------------------------------------------|--------------|
| <u>590-v1</u> | Global constraints on diffusive particle acceleration by strong non-relativistic shocks | Siming Liu       | <u>Publications [已发表文章]</u><br>银河系宇宙线(紫台) | 29 Dec 2018  |
| <u>589-v1</u> | 12月20组会                                                                                 | Siming Liu       | <u>银河系宇宙线(紫台)</u>                         | 29 Dec 2018  |
| <u>576-v1</u> | 多波段研究组会2018-11-15                                                                       | <u>Hui Zhu</u>   | <u>多波段研究(国台)</u>                          | 10 Dec 2018  |
| <u>575-v1</u> | 多波段研究组会2018-12-07                                                                       | <u>Hui Zhu</u>   | <u>多波段研究(国台)</u>                          | 10 Dec 2018  |
| <u>546-v2</u> | 宇宙线三维各向异性扩散讨论10月22日                                                                     | <u>Hongbo Hu</u> | <u>3D CR propagation [3D宇宙线传播]</u>        | 30 Nov 2018  |
| <u>545-v1</u> | 宇宙线三维各向异性扩散讨论11月15日                                                                     | <u>Hongbo Hu</u> | 3D CR propagation [3D宇宙线传播]               | 30 Nov 2018  |
| <u>544-v1</u> | 宇宙线三维各向异性扩散讨论11月01日                                                                     | <u>Hongbo Hu</u> | 3D CR propagation [3D宇宙线传播]               | 30 Nov 2018  |
| <u>542-v1</u> | <u>Plasma Waves</u>                                                                     | <u>Hongbo Hu</u> | 3. Third topic [宇宙线起源的唯象研究]               | 29 Nov 2018  |
| <u>518-v3</u> | 宇宙线三维各向异性扩散讨论10月25日                                                                     | <u>Hongbo Hu</u> | 3D CR propagation [3D宇宙线传播]               | 29 Oct 2018  |

### 第三课题组年度考核指标

#### 研究生和<mark>博士后</mark>培养指标 每年参与项目的研究生和<mark>博士后</mark>人数

| 培养单位         | 紫金山天<br>文台        | 国家天文<br>台         | 高能物理<br>研究所 | 南京大学              |
|--------------|-------------------|-------------------|-------------|-------------------|
| 2019         | 4+ <mark>1</mark> | 4                 | 1           | 1+ <mark>1</mark> |
| 2020         | 4+ <mark>1</mark> | 4+ <mark>1</mark> | 2           | 1+ <mark>1</mark> |
| 2021         | 3+ <mark>2</mark> | 3+ <mark>2</mark> | 2           | 1                 |
| 2022         | 2+ <mark>2</mark> | 3+ <mark>2</mark> | 2           | 1                 |
| 2023         | 2+ <mark>2</mark> | 2+ <mark>2</mark> | 1           | 1                 |
| 毕业或出<br>站总人数 | 3+ <mark>2</mark> | 4+ <mark>2</mark> | 2           | 3+1               |

