

CP Violation in Charm Decays at LHCb

Liang Sun Wuhan University

HFCPV-2019 2019/7/31, Hohhot, China

Outline

• Recent LHCb results (since HFCPV-2018):

For a complete paper list on charm, see <u>LHCb link</u>

- Search for CPV in $D^+ \rightarrow K_S K^+$, $D_s^+ \rightarrow K_s \pi^+$, and $D^+ \rightarrow \phi \pi^+_{[PRL 122 (2019) 191803]}$
- A_{Γ} in D⁰ \rightarrow K+K- and D⁰ \rightarrow $\pi^{+}\pi^{-}$ [LHCb-CONF-2019-001]
- Oscillation of charm mesons in $D^0 \rightarrow K_s \pi \pi$ [PRL 122 (2019) 231802]
- ΔA_{CP} in D⁰ \rightarrow K-K+ and D⁰ $\rightarrow \pi$ - π + [PRL 122 (2019) 211803] observation
- Summary & outlook

of charm

CPV

CP Violation in Charm

- Only way to probe CP violation in up-type quark
- Complementary to K and B mesons with observed CPV
- Difficult to calculate SM predictions, but small (10-3 – 10-4) CP asymmetry is expected → hints of NP if higher values are observed
- CPV in charm sector yet to be found (by 2018)

Unitarity triangle for charm $V_{ud}V_{cd}^* + V_{us}V_{cs}^* + V_{ub}V_{cb}^* = 0$ $\sim \lambda \qquad \sim \lambda \qquad \sim \lambda^5$ $\lambda = \sin(\theta_c) \sim 0.23$

Expected CPV very small in charm

- Effectively 2-generation system
- 3rd generation and CPV enter through loops

Mixing and CPV in $D^0 - \overline{D}^0$

• Charm mixing: a well-established fact:

- Mass eigenstates are related to their flavor eigenstates via $|D_{1,2}\rangle \equiv p|D^0\rangle \pm q|D^0\rangle$, with $|q|^2 + |p|^2 \equiv 1$
- Mixing parameters based on the mass and width differences: $x \equiv (m_2 - m_1)/\Gamma$, $y \equiv (\Gamma_2 - \Gamma_1)/2\Gamma$, with $\Gamma \equiv (\Gamma_2 + \Gamma_1)/2$

Mixing and CPV in $D^0 - \overline{D}^0$

• Charm mixing: a well-established fact:

- Mass eigenstates are related to their flavor eigenstates via $|D_{1,2}\rangle \equiv p|D^0\rangle \pm q|D^0\rangle$, with $|q|^2 + |p|^2 \equiv 1$
- Mixing parameters based on the mass and width differences: $x \equiv (m_2 - m_1)/\Gamma$, $y \equiv (\Gamma_2 - \Gamma_1)/2\Gamma$, with $\Gamma \equiv (\Gamma_2 + \Gamma_1)/2$
- CP violation contributions:
 - In decays: amplitudes for a process and its conjugate differ Direct *CP* violation $\begin{vmatrix} \overline{A_f} \\ \overline{A_f} \end{vmatrix}^{+2} \approx 1 \pm A_d \implies a_{CP}^{dir} \approx -\frac{1}{2}A_d$ - In mixing: rates of $D^0 \rightarrow \overline{D}^0$ and $\overline{D}^0 \rightarrow D^0$ differ

Indirect *CP*
violation
$$\left|\frac{q}{p}\right|^{\pm 2} \approx 1 \pm A_m \Rightarrow a_{CP}^{ind} = -\frac{A_m}{2}y\cos\phi + x\sin\phi \qquad \phi: weak phase, A_m: CPV from mixing$$

- In interference between mixing and decay diagrams

LHCb experiment

0.5

1850

<u> HCb-CONF-2016-005</u>

6

1900

 $K^{-}\pi^{+}$ mass $[MeV/c^{2}]$

 Run2: Turbo stream from online reconstruction [Comput. Phys. Commun. 208 (2016) 35]

LHCb data-taking

LHCb Cumulative Integrated Recorded Luminosity in pp, 2010-2018

• Run I: 1.0 fb⁻¹ @ 7 TeV (2011) + 2.0 fb⁻¹ @ 8 TeV (2012)

Run II: 0.3 fb⁻¹ (2015) + 1.7 fb-1 (2016) + 1.7 fb⁻¹ (2017) + 2.2 fb⁻¹ (2018) @ 13 TeV

D^o production and flavor tagging at LHCb

D^o production and flavor tagging at LHCb

Search for CPV in $D_{(s)}^{+}$ decays

- CPV can arise from interference between $c \rightarrow d\overline{d}u$ and $c \rightarrow s\overline{s}u$
- Simultaneous fits to

extract raw asymmetries $A(D^+_{(s)} \rightarrow f^+) \equiv \frac{N(D^+_{(s)} \rightarrow f^+) - N(D^-_{(s)} \rightarrow f^-)}{N(D^+_{(s)} \rightarrow f^+) + N(D^-_{(s)} \rightarrow f^-)}$

$$A_{CP}(D_s^+ \to K_S^0 \pi^+) \approx A(D_s^+ \to K_S^0 \pi^+) - A(D_s^+ \to \phi \pi^+)$$

$$A_{CP}(D^+ \to K_S^0 K^+) \approx A(D^+ \to K_S^0 K^+) - A(D^+ \to K_S^0 \pi^+)$$

$$- A(D_s^+ \to K_S^0 K^+) + A(D_s^+ \to \phi \pi^+)$$

$$A_{CP}(D^+ \to \phi \pi^+) \approx A(D^+ \to \phi \pi^+) - A(D^+ \to K_S^0 \pi^+)$$

• Run2 3.8 fb⁻¹ (2015+2016+2017) prompt $D_{(s)}^+$ data:

Search for CPV in $D_{(s)}^{+}$ decays

- CPV can arise from interference between $c \rightarrow d\overline{d}u$ and $c \rightarrow s\overline{s}u$
- Simultaneous fits to

extract raw asymmetries $A(D^+_{(s)} \rightarrow f^+) \equiv \frac{N(D^+_{(s)} \rightarrow f^+) - N(D^-_{(s)} \rightarrow f^-)}{N(D^+_{(s)} \rightarrow f^+) + N(D^-_{(s)} \rightarrow f^-)}$

$$A_{CP}(D_s^+ \to K_S^0 \pi^+) \approx A(D_s^+ \to K_S^0 \pi^+) - A(D_s^+ \to \phi \pi^+)$$

$$A_{CP}(D^+ \to K_S^0 K^+) \approx A(D^+ \to K_S^0 K^+) - A(D^+ \to K_S^0 \pi^+)$$

$$- A(D_s^+ \to K_S^0 K^+) + A(D_s^+ \to \phi \pi^+)$$

$$A_{CP}(D^+ \to \phi \pi^+) \approx A(D^+ \to \phi \pi^+) - A(D^+ \to K_S^0 \pi^+)$$

• Results with Run2 3.8 fb⁻¹ (2015+2016+2017) data:

$$\begin{array}{ll} \mathsf{A}_{\mathsf{CP}}(\mathsf{D}_{\mathsf{s}}^{+}\to\mathsf{K}_{\mathsf{S}}^{0}\pi^{+}) &= (1.3\pm1.9\pm0.5)\times10^{-3} \\ \mathsf{A}_{\mathsf{CP}}(\mathsf{D}^{+}\to\mathsf{K}_{\mathsf{S}}^{0}\mathsf{K}^{+}) &= (-0.09\pm0.65\pm0.48)\times10^{-3} \\ \mathsf{A}_{\mathsf{CP}}(\mathsf{D}^{+}\to\phi\pi^{+}) &= (0.05\pm0.42\pm0.29)\times10^{-3} \end{array}$$

• Results with Run1 & Run2 combined:

 $\begin{array}{ll} \mathsf{A}_{\mathsf{CP}}(\mathsf{D}_{\mathsf{s}}^{+}\to\mathsf{K}_{\mathsf{S}}^{0}\pi^{+}) &= (1.6\pm1.7\pm0.5)\times10^{-3} \\ \mathsf{A}_{\mathsf{CP}}(\mathsf{D}^{+}\to\mathsf{K}_{\mathsf{S}}^{0}\mathsf{K}^{+}) &= (-0.04\pm0.61\pm0.45)\times10^{-3} \\ \mathsf{A}_{\mathsf{CP}}(\mathsf{D}^{+}\to\phi\pi^{+}) &= (0.03\pm0.40\pm0.29)\times10^{-3} \end{array}$

Best A_{CP} measurements on these channels!

Search for CPV: measuring A_{Γ}

• Measure of indirect CPV in D⁰ SCS decays to CP eigenstates:

$$A_{\mathsf{CP}}(t) = \frac{\Gamma(D^0 \to f) - \Gamma(\bar{D}^0 \to f)}{\Gamma(D^0 \to f) + \Gamma(\bar{D}^0 \to f)} \approx A_{\mathsf{CP}}^{\mathsf{dir}} - A_{\mathsf{\Gamma}}\left(\frac{t}{\tau}\right), \qquad f = K^+ K^-, \ \pi^+ \pi^-$$
$$A_{\mathsf{\Gamma}} = \frac{1}{2} \left[\left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) y \cos \phi + \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) x \sin \phi \right] \approx y \left(\left| \frac{q}{p} \right| - 1 \right) - x\phi$$
with $\phi = \arg \left(-\frac{q}{p} \frac{\bar{A}_f}{A_f} \right)$

• If $A_{\Gamma} \neq 0 \rightarrow \text{ indirect CPV}$

[LHCb-CONF-2019-001]

Search for CPV: measuring A_{Γ}

$A_{\Gamma} \text{ in } D^0 \rightarrow K^+ K^-, \pi^+ \pi^-$

• A_{Γ} probes CPV in mixing and interference $A_{CP}(f,t) \approx A_{CP}^{\text{decay}}(f) - \boxed{\mathbf{A}_{\Gamma}} \frac{t}{\tau_{D^0}}$ - A linear fit to A_{CP} in bins of D⁰ decay time

extracts A_{Γ} as slope parameter

• With Run2 2fb-1 data we have

 $A_{\Gamma}(D^0 \rightarrow K^+K^-) = (1.3 \pm 3.5 \pm 0.7) \times 10^{-4}$ $A_{\Gamma}(D^0 \rightarrow \pi^+\pi^-) = (11.3 \pm 6.9 \pm 0.8) \times 10^{-4}$

 \bullet $A_{\scriptscriptstyle \Gamma}$ does not depend on D decay channel, the

two values can be combined

 $A_{\Gamma}(D^0 \rightarrow h^+h^-) = (3.4 \pm 3.1 \pm 0.6) \times 10^{-4}$ $(h = K, \pi)$

• Combining with Run1 results [PRL 118 (2017) 261803]:

$$A_{\Gamma}(D^0 \rightarrow h^+h^-) = (0.9 \pm 2.1 \pm 0.7) \times 10^{-4}$$

 $(h = K, \pi)$

 A_{Γ} is consistent with SM!

[PRL 122 (2019) 231802]

Oscillations of charm mesons in $D^0 \rightarrow K_s^{0}\pi\pi$

- $|\mathbf{D}_{1,2}\rangle = \mathbf{p} \left|\mathbf{D}^{0}\right\rangle \pm \mathbf{q} \left|\overline{\mathbf{D}^{0}}\right\rangle$ $\mathbf{x} \equiv \frac{\mathbf{m}_{1} \mathbf{m}_{2}}{\Gamma}; \mathbf{y} \equiv \frac{\Gamma_{1} \Gamma_{2}}{2\Gamma}$
- x determines the oscillation rate
 - x is very small for D^o, but x and CPV can be enhanced by NP
 - CPV can occur in the mixing \rightarrow oscillation rates differ for D⁰ and \overline{D}^0
- LHCb Run1, tagged $D^{_0} \rightarrow K_{_S}{}^{_0}\pi\pi$ decay yields
 - Prompt: ~1.3M, Semileptonic: ~1M
- $D^{\scriptscriptstyle 0} \,{\to}\, K_s{}^{\scriptscriptstyle 0} \pi \pi$ has rich resonance structures
- Model-independent approach (bin-flip method) [PRD 99 (2019) 012007]
 - To avoid efficiency modeling

$$m_{\pm}^{2} \equiv \begin{cases} m^{2}(K_{\rm s}^{0}\pi^{\pm}) & \text{for } D^{0} \to K_{\rm s}^{0}\pi^{+}\pi^{-} \\ m^{2}(K_{\rm s}^{0}\pi^{\mp}) & \text{for } \overline{D}^{0} \to K_{\rm s}^{0}\pi^{+}\pi^{-} \end{cases}$$

Model-independent Bin-flip method

• Use strong-phase info c_b , s_b from CLEO-C [PRD 82 (2010) 112006]

- Bin Dalitz-plot into ±*b* about $m_{+}^{2} = m_{-}^{2}$ with almost constant $\Delta \delta_{D}$
- *D* decay time into bins *j*
- Measure ratio of signal in *-b* and +*b* in bin *j*

 $R_{bj}^{\pm} = \frac{r_b \left[1 + \frac{1}{4} t_j^2 Re(z_{CP}^2 - \Delta z^2)\right] + \frac{1}{4} t_j^2 |z_{CP} \pm \Delta z|^2 + \sqrt{r_b} t_j Re\left[\mathbf{X}_b^*(z_{CP} \pm \Delta z)\right]}{\left[1 + \frac{1}{4} t_j^2 Re(z_{CP}^2 - \Delta z^2)\right] + r_b \frac{1}{4} t_j^2 |z_{CP} \pm \Delta z|^2 + \sqrt{r_b} t_j Re\left[\mathbf{X}_b^*(z_{CP} \pm \Delta z)\right]},$ where $z_{CP} \pm \Delta z = -\left(\frac{q}{p}\right)^{\pm}(y + ix)$ and r_b is ratio without mixing $\mathbf{X}_b = \mathbf{c}_b - \mathbf{i}\mathbf{s}_b$ $\frac{R^{\pm} \text{ changes with time} \Rightarrow \text{Mixing}}{R^+ \neq R^- \Rightarrow \text{Indirect CPV}}$

[PRL 122 (2019) 231802]

Oscillations of charm mesons in $D^0 \rightarrow K_s^0 \pi \pi$

• Results with run1 data:

 $y_{CP} = [0.74 \pm 0.36 (stat) \pm 0.11 (syst)]\%$ $\Delta y = [-0.06 \pm 0.16 (stat) \pm 0.03 (syst)]\%$ $x_{CP} = [0.27 \pm 0.16 (stat) \pm 0.04 (syst)]\%$

 $\Delta x = [-0.053 \pm 0.070 \text{ (stat)} \pm 0.022 \text{ (syst)}]\%$

- Best precision on x from a single experiment!
- Combination with current global knowledge gives x > 0 at more than 3σ
 - First evidence that masses of D^o eigenstates differ

[PRL 122 (2019) 211803]

ΔA_{CP} measurement

PV

 D^0

- LHCb uses full Run2 5.9 fb⁻¹ data
- Raw asymmetry for tagged D⁰
 decays to a final state *f* (K⁺K⁻, π⁺π⁻):

$$A_{\rm raw}(f) = \frac{N(D^0 \to f) - N(\overline{D}{}^0 \to f)}{N(D^0 \to f) + N(\overline{D}{}^0 \to f)}$$

- $\mathbf{A}_{raw} = \mathbf{A}_{CP} + \mathbf{A}_{D} + \mathbf{A}_{P}$
 - A_D : Detection asymmetry from π_s (prompt)
 - A_P : Production asymmetry of D^{*} (prompt)
- With many systematics canceled at first order, it is relatively easy to measure time-integrated difference in CP asymmetry

$$\Delta A_{CP} \equiv A_{raw}(KK) - A_{raw}(\pi\pi) = A_{CP}(KK) - A_{CP}(\pi\pi)$$

[PRL 122 (2019) 211803]

ΔA_{CP} measurement

 \overline{B}

- LHCb uses full Run2 5.9 fb-1 data
- Raw asymmetry for tagged D^o decays to a final state f (K+K-, π + π -):

$$A_{\rm raw}(f) = \frac{N(D^0 \to f) - N(\overline{D}{}^0 \to f)}{N(D^0 \to f) + N(\overline{D}{}^0 \to f)}$$

- $\mathbf{A}_{raw} = \mathbf{A}_{CP} + \mathbf{A}_{D} + \mathbf{A}_{P}$
 - A_D : Detection asymmetry from μ (semileptonic)
 - A_P : Production asymmetry of B (semileptonic)
- With many systematics canceled at first order, it is relatively easy to measure time-integrated difference in CP asymmetry

$$\Delta A_{CP} \equiv A_{raw}(KK) - A_{raw}(\pi\pi) = A_{CP}(KK) - A_{CP}(\pi\pi)$$

Observation of charm CPV

• From full Run2 5.9 fb⁻¹ data:

$$\Delta A_{CP}^{\pi-tag} = (-18.2 \pm 3.2 \pm 0.9) \times 10^{-4},$$

 $\Delta A_{CP}^{\mu-tag} = (-9 \pm 8 \pm 5) \times 10^{-4}$

• Combination with Run1 results:

$$\Delta A_{CP} = (-15.4 \pm 2.9) imes 10^{-4}$$

- Observation of CP violation with 5.3σ significance!

- Result is consistent with, although at upper end of SM expectations $(10^{-3} - 10^{-4})$

HFLAV updates

World average dominated by LHCb results

provided by the courtesy of M. Gersabeck

ΔA_{CP} history in LHCb

ΔA_{CP} experimental status

[LHCb-PUB-2018-009]

Prospects of LHCb

Major upgrade phases

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 ... LS3 Run 3 LHC LS3 LS4 **HL-LHC** Run 4 Run 5 LHCD Upgrade la Upgrade Ib Upgrade II \mathcal{B}

- Upgrade (2020-2023) will provide 3x larger dataset
- Upgrade (2025-) will be for
 HL-LHC to collect > 300/fb
 (30x of current level)
 - → Ambitious but extremely rewarding

[LHCb-PUB-2018-009]

Prospects of LHCb

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II
EW Penguins				
$\overline{R_K} \ (1 < q^2 < 6 \ \mathrm{GeV}^2 c^4)$	$0.1 \ [274]$	0.025	0.036	0.007
$R_{K^*} \ (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	$0.1 \ [275]$	0.031	0.032	0.008
$R_{\phi}, R_{pK}, R_{\pi}$		0.08, 0.06, 0.18		0.02, 0.02, 0.05
CKM tests				
$\overline{\gamma}$, with $B_s^0 \to D_s^+ K^-$	$\binom{+17}{-22}^{\circ}$ [136]	4°		1°
γ , all modes	$(^{+5.0}_{-5.8})^{\circ}$ [167]	1.5°	1.5°	0.35°
$\sin 2\beta$, with $B^0 \to J/\psi K_{\rm S}^0$	0.04 [606]	0.011	0.005	0.003
ϕ_s , with $B_s^0 \to J/\psi\phi$	$49 \text{ mrad} [\overline{44}]$	$14 \mathrm{mrad}$		4 mrad
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	170 mrad [49]	$35 \mathrm{mrad}$		9 mrad
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	$154 \text{ mrad } \overline{[94]}$	39 mrad		11 mrad
$a_{\rm sl}^s$	33×10^{-4} [211]	10×10^{-4}		3×10^{-4}
$ V_{ub} / V_{cb} $	6% [201]	3%	1%	1%
$B^0_s, B^0{ ightarrow}\mu^+\mu^-$				
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)} / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	90% [264]	34%		10%
$\tau_{B^0_s \to \mu^+ \mu^-}$	22% [264]	8%		2%
$S_{\mu\mu}$				0.2
$b ightarrow c \ell^- ar{ u_l} { m LUV} { m studies}$				
$\overline{R(D^*)}$	0.026 [215, 217]	0.0072	0.005	0.002
$R(J/\psi)$	0.24 [220]	0.071		0.02
Charm				
$\Delta A_{CP}(KK - \pi\pi)$	8.5×10^{-4} [610]	$1.7 imes 10^{-4}$	$5.4 imes 10^{-4}$	$3.0 imes 10^{-5}$
$A_{\Gamma} \ (\approx x \sin \phi)$	2.8×10^{-4} [240]	4.3×10^{-5}	$3.5 imes 10^{-4}$	$1.0 imes 10^{-5}$
$x\sin\phi$ from $D^0 \to K^+\pi^-$	13×10^{-4} [228]	$3.2 imes 10^{-4}$	$4.6 imes 10^{-4}$	$8.0 imes10^{-5}$
$x\sin\phi$ from multibody decays	-	$(K3\pi) \ 4.0 \times 10^{-5}$	$(K_{\rm s}^0\pi\pi)~1.2 \times 10^{-4}$	$(K3\pi) \ 8.0 \times 10^{-6}$

Summary

- LHCb is in fact a charm factory and has the world's largest sample of charm decays
- High statistics and superb detector performance allow for high precision measurements on charm CP
- Still more charm results in the pipeline with full Run1+2 data, stay tuned!
- Longer term: LHCb's first upgrade has already begun
 - Will allow for measurements with 10x larger samples within a few years
- Synergy with BESIII important for CPV searches in the charm sector

Phys. Rev. Lett. 122, 211803

	(×10 ⁻⁴)	
Source	π -tagged	μ -tagged
Fit model	0.6	2
Mistag	—	4
Weighting	0.2	1
Secondary decays	0.3	_
Peaking background	0.5	_
B fractions	—	1
B reco. efficiency	10-00	2
Total	0.9	5

- Dominant systematic uncertainty:
 - Prompt:
 - fit model: evaluated by pseudo-experiments
 - Peaking (m(D⁰π)) background (D⁰ → K⁻π⁺π⁰, D⁰ → π⁻ℓ⁺ν_ℓ): evaluated via measuring yields and background asymmetries in m(D⁰) distributions
 - Semileptonic:
 - Mistag evaluated from $B \to D^0(K^-\pi^+)\mu X$ sample

