

AHCAL Optimization

石禹坤 核探测与核电子学国家重点实验室 中国科学技术大学

- Background and Simulation Setup
- Reconstruction Process
- CellSize Optimization
 - Pion and KLong separation
 - Simple PFA method
- Read out layer Optimization
- Conclusion

Background and Simulation Setup

- Simulation Setup
 - ECAL
 - 30 layers
 - Absorber:2.8mm tungsten
 - Si:10×10×0.5mm³
 - PCB:2mm
 - AHCAL
 - 40 layers
 - Absorber:20mm Fe
 - Scintillator: $10 \times 10 \times 3 mm^3$
 - PCB:2mm

Background and Simulation Setup

Tracker

Charged

particle

65%

- The resolution of tracker, ECAL and HCAL is quite different
- The optimal detector to detect different components of a jet
- Cellsize is the key parameter for PFA calorimeter

ECAL

photon

25%

Background and Simulation Setup

- Incident particle
 - 10 GeV pion-
 - 10 GeV KLong: abundant in H-gg event
- Feature of KLong
 - KLong usually doesn't deposit significant energy in ECAL so that it doesn't have a 'stick' in the front
 - KLong is wider than pion

- The physical structure of a shower is exactly like a tree
- So we reconstruct bushes first

confusion

Fail events

 Head and tail
 confusion

- Successful event
 - Pion KLong distance 30mm

- 70mm cellsize
 - Incident position
 - pion:75mm
 - Klong:0mm

10

Klong 11.8GeV

Pion and KLong separation

- Real situation
 - Charged particle: track can provide energy and direction
 - Uncharged particle: even don't know the number of them
- Strategy for pion, K in MC
 - Assume that the incident direction is the track in Simplified geometry
 - Pion, K candidate selection
 - Pion_{candidate}: cluster closest to pion track and energy >mean 3σ
 - K_{candidate}: cluster doesn't match pion track with largest cluster energy
 - KLong fragment : cluster away from pion track
 - Efficiency for pion, K
 - Real pion: | energy pion_{candidate} mean_{pion} | <3σ && close to track(COG dis < 80mm && Angle < 30degree)
 - Real KLong: |energy $K_{candidate}$ mean_K| <3 σ && close to track
 - All : a Event with a real pion and a real KLong

Pion and KLong separation

KLong_{candidate} energy distribution

- Straight Line is efficiency of single particle event
- Marker is efficiency of di particle event
- particle distance is the distance of 2 particle on ECAL surface

Pion and KLong separation

- Different cellsize
 - Keep the energy mean of single particle similar
 - Energy sigma stays unchanged as 10mm cellsize situation

Pion and KLong separation

- Critical Distance
 - The distance which has 85% efficiency is define as critical distance

- Simple PFA method
 - PFA:E = pion track + KLong calorimeter
 - Real situation: E = pion track + part of pion fragment + KLong

- Energy resolution
 - Total Hit energy resolution
 - Total cluster energy resolution
 - Simple PFA resolution

– 50mm is obviously worse than others

- 30mm is a safe choice

Read out layer optimization

- Setup
 - Optimization of read out layer is done with 30mm cellsize
 - The optimization is done by combining the read out of adjoint layers
 - Layer ranges from 48 to 24,16,12
 - Hit position after combining is set to the 1st layer of combined layers

Read out layer optimization

• Results

- No significant influence is observed till 12 layer

Read out layer optimization

中国科学技术大学

University of Science and Technology of China

Conclusion

- CellSize
 - Performance for different AHCAL cellsize has been studied
 - 30mm is a safe choice
- Readout layer number
 - Performance stays unchanged till 12 layer
 - Double layer combined readout won't affect
 PFA

backup

Pion and KLong separation

中国科学技术大学

University of Science and Technology of China

Pion and KLong separation

- 70mm cellsize
 - Incident position
 - pion:0mm
 - Klong:0mm

Marlin arbor and Cluster building

- Digitization
 - Combine small cell into the size we want
- arbor
 - 6 parameter in total
 - EE connection(xy direction and z direction)
 - EH connection
 - HH connection(xy direction and z direction)
 - EE Seed connection

Marlin arbor and Cluster building

• Bush merge

- Merge small cluster into core and fragment
- Cluster Seed:hit closest to origin point in cluster
- Cluster COG:center of energy gravity
- Cluster direction:vector connecting COG and Seed
- Joint: close hits from different cluster
- Cluster depth:distance from cluster Seed to ECAL surface
- Connection of EE,EH,HH clusters has different cut on cluster Seed difference,COG difference,number of joints,transSeed difference
- Only deeper cluster can be merge into shallower 29 cluster

Marlin arbor and Cluster building

• For single pion event in 10mm cellsize

74% energy ratio

CriticalDistance pion

74% energy ratio

CriticalDistance pion

CriticalDistance

- Klong:81%
- Pion:75%