CEPC Crystal Calorimeter Status and Prospective

Yong Liu (IHEP)
Aug. 16, 2019
CEPC Day at IHEP, Beijing

Overview: motivations

- Why crystal calorimeter?
- Homogeneous structure
- (Mostly) all material sensitive to particles
- Provide optimal energy resolution
- Fine segmentation
- Potentials in PFA for precision measurements of jets
- Energy recovery of electrons: to improve Higgs recoil mass
- Corrections to the Bremsstrahlung of electrons

(b)
- CEPC crystal ECAL status
- Proposed first in the CEPC Calorimetry Workshop in March 2019
- Followed in the CEPC Oxford Workshop in April 2019

Overview: designs of crystal ECAL

- 3 major designs being pursued
- Long crystal bars with optical readout at both ends (Y. Wang, et al.)
- Use timing information for hit positions; less \#channels
- Long crystal bars with optical readout at single ends (C. Tully, et al.)
- Less segmentation in the longitudinal direction; space for cooling
- Thin crystal tiles with optical readout at single ends (Y. Liu, et al.)
- Started with ultra-fine segmentation (both longitudinal and transverse)
- Seeking trade-off between \#channels and performance

Idea on Reconstruction of di－photon event

纵向两个平面沉积能量分布

根据种子晶体的数目，能量和位置分配每层的能量，作为子簇团沿纵向将每层的子簇团连接成完整的簇团（能量，位置）
－Find the seed（max．energy in crystal）
－Reconstruct the hit positions based on the timing information
－Connections of sub－clusters into a complete shower

ECAL with crystal bars

- Geant4 full simulation with a single long bar
- Implemented realistic optical properties: detailed simulation of optical photons
- Time stamps and \#photons at both 2 PMTs for muons
- Extract timing resolutions at different hitting positions

Simplified Digitization

- Can separate 5 GeV di-photon showers when distance $>=4 \mathrm{~cm}$ with ~ 145 ps resolution

145ps

5 GeV diphoton

Separation power: di-photons showers

Crystal ECAL status at US

Design and simulation studies at CEPC Oxford Workshop (Apr. 2019)

- Crystal ECAL: new ideas
- Exploring ways of dual readout in the ECAL (i.e. in the first nuclear interaction length)
- Proposal sent to DR colleagues
- Maintain a large fraction of active crystal volume to provide 3\%/sqrt(E) for electrons/photons
- Also provide projective Cherenkov sampling (C)
- Compare the EM fraction (C) with the total from the crystals (S)

Crystal ECAL status at US

- Crystal ECAL: new design for dual readout
- Crystal (PbWO4or BGO): $1 \times 1 \mathrm{~cm}^{2}$, chambered, optically isolated
- 2 pieces of Cherenkov radiator ($1 \mathrm{~mm}^{2}$): glued on the opposite sides

- Plan
- Introduce a crystal geometry into the PFA simulation software

Sketch looking from the interaction point

Full simulation for a crystal bar

- Established Geant4 full simulation with optical photons
- A single PbWO crystal bar, directly coupled with a SiPM
- Able to perform detailed studies: comparison with measurements, fast timing, etc.

Geometry

All photons produced

Detected photons
sipmPhoton

An example: \#photons detected at a SiPM (6x6mm ${ }^{2}$)

Cosmic ray tests with PbWO crystal

- Tested a PbWO crystal with cosmic muons
- PbWO crystal from SIC, tested at IHEP
- Wrapped with Tyvek paper and ESR foil
- Read out with a $3 \times 3 \mathrm{~mm}^{2}$ SiPM (from BNU-NDL)
muons

PbWO crystal, $10 \times 10 \times 150 \mathrm{~mm}^{3}$, by courtesy of Zhigang Wang (IHEP)

Example of pre-cut Tyvek paper

$6 \times 6 \mathrm{~mm}^{2}$ SiPM planned, but TSV-point broken after soldering...

- Combined setup ECAL+HCAL

- Established stand-alone Geant4 simulation (no optical photons at this large scale)
- Crystal ECAL: 30 layers (30X0)
- BGO/PbWO crystal tiles, 1X0 thick
- Transverse granularity: 20mm (~Moliere radius)
- HCAL: scintillator + steel plates

Calibration runs: 120 GeV mu-

Digitization in a nutshell

Digitizer can reproduce G4 full simulation with optical photons

HcalTile Edep in MIPs

- Geant4 hit (energy deposition) \rightarrow ADC signal in electronics (charge)
- Extra effects that degrades resolution
- Photon statistics: \#photons/MIP
- Electronics resolution: \#ADCs/photon

Digitization: impacts to energy resolution

ECAL-Crystal: Energy Resolution

Impact from photon statistics:
30 p.e./MIP vs 300 р.e./MIP

ECAL-Crystal: Energy Resolution

Impact from electronics resolution for single photons:
Sigma of SiPM gain $\sim 7 \% /$ p.e. vs 20\%/p.e.

Plans

- Study the hadronic shower profiles in crystal ECAL
- MC samples ready
- Probe the potentials of precision timing for shower separation and PID
- Further crystal studies: measurements and G4 full simulation
- Performance with the BGO crystals
- Validate the G4 full simulation
- Improve the digitizer for crystals

