

CEPC Crystal Calorimeter Status and Prospective

Yong Liu (IHEP) Aug. 16, 2019 CEPC Day at IHEP, Beijing

8/16/2019 Yong Liu (liuyong@ihep.ac.cn)

- Why crystal calorimeter?
 - Homogeneous structure
 - (Mostly) all material sensitive to particles
 - Provide optimal energy resolution
 - Fine segmentation
 - Potentials in PFA for precision measurements of jets
 - Energy recovery of electrons: to improve Higgs recoil mass
 - Corrections to the Bremsstrahlung of electrons
- CEPC crystal ECAL status
 - Proposed first in the CEPC Calorimetry Workshop in March 2019
 - Followed in the CEPC Oxford Workshop in April 2019

- 3 major designs being pursued
 - Long crystal bars with optical readout at both ends (Y. Wang, et al.)
 - Use timing information for hit positions; less #channels
 - Long crystal bars with optical readout at single ends (C. Tully, et al.)
 - Less segmentation in the longitudinal direction; space for cooling
 - Thin crystal tiles with optical readout at single ends (Y. Liu, et al.)
 - Started with ultra-fine segmentation (both longitudinal and transverse)
 - Seeking trade-off between #channels and performance

ECAL with crystal bars

Idea on Reconstruction of di-photon event

- Find the seed (max. energy in crystal)
- Reconstruct the hit positions based on the timing information
- Connections of sub-clusters into a complete shower

ECAL with crystal bars

- Geant4 full simulation with a single long bar
 - Implemented realistic optical properties: detailed simulation of optical photons
 - Time stamps and #photons at both 2 PMTs for muons
 - Extract timing resolutions at different hitting positions

200

Separation power: di-photons showers

~145 ps as the conservative estimate for the intrinsic timing resolution

Separation power: di-photons showers

Yuexin Wang (IHEP)

5GeV diphoton

Crystal ECAL status at US

Design and simulation studies at CEPC Oxford Workshop (Apr. 2019)

• Crystal ECAL: new ideas

- Exploring ways of dual readout in the ECAL (i.e. in the first nuclear interaction length)
 - Proposal sent to DR colleagues
- Maintain a large fraction of active crystal volume to provide 3%/sqrt(E) for electrons/photons
- Also provide projective Cherenkov sampling (C)
- Compare the EM fraction (C) with the total from the crystals (S)

- Crystal ECAL: new design for dual readout
 - Crystal (PbWO4or BGO): 1x1cm², chambered, optically isolated
 - 2 pieces of Cherenkov radiator (1mm²): glued on the opposite sides

Plan

 Introduce a crystal geometry into the PFA simulation software

Sketch looking from the interaction point

Full simulation for a crystal bar

- Established Geant4 full simulation with optical photons
 - A single PbWO crystal bar, directly coupled with a SiPM
 - Able to perform detailed studies: comparison with measurements, fast timing, etc.

Cosmic ray tests with PbWO crystal

- Tested a PbWO crystal with cosmic muons
 - PbWO crystal from SIC, tested at IHEP
 - Wrapped with Tyvek paper and ESR foil
 - Read out with a 3x3mm² SiPM (from BNU-NDL)

PbWO crystal, 10x10x150 mm³, by courtesy of Zhigang Wang (IHEP)

6x6mm² SiPM planned, but TSV-point broken after soldering...

- Combined setup ECAL+HCAL
 - Established stand-alone Geant4 simulation (no optical photons at this large scale)
 - Crystal ECAL: 30 layers (30X0)
 - BGO/PbWO crystal tiles, 1X0 thick
 - Transverse granularity: 20mm (~Moliere radius)
 - HCAL: scintillator + steel plates
 - 48 layers in total
 - Plastic scintillator: 3mm thick, 30x30mm²
 - Steel: 20 mm
- Digitization in simulation: crucial
 - For scintillator: crystal (ECAL), plastic (HCAL)
 - Energy depositions (hits) → scintillation photons
 → SiPM pixels → ADC signals in electronics

Calibration runs: 120 GeV mu-

Digitization in a nutshell

- Geant4 hit (energy deposition) → ADC signal in electronics (charge)
- Extra effects that degrades resolution
 - Photon statistics: #photons/MIP
 - Electronics resolution: #ADCs/photon

Digitization: impacts to energy resolution

Geant4 version 10.5.0

MC samples: electrons

ECAL-Crystal: Energy Resolution

Impact from photon statistics: 30 p.e./MIP vs 300 p.e./MIP

Impact from electronics resolution for single photons: Sigma of SiPM gain ~7%/p.e. vs <u>20%/p.e.</u>

- Study the hadronic shower profiles in crystal ECAL
 - MC samples ready
- Probe the potentials of precision timing for shower separation and PID
- Further crystal studies: measurements and G4 full simulation
 - Performance with the BGO crystals
 - Validate the G4 full simulation
 - Improve the digitizer for crystals