Status of ECAL calorimeter R&D

Yazhou Niu (USTC)

State Key Laboratory of Particle Detection and Electronics

On behalf of the CEPC calorimeter working group

http://cicpi.ustc.edu.cn/indico/conferenceOtherViews.py?confId=2131&view=standard

• 2 days CEPC calorimetry symposium @Hefei, 8-9 August

- > ECAL crucial parameters optimization
- > Introduction of CEPC ECAL R&D project
- > ECAL unit study and optimization
- > Electronics(EBU, DIF & DAQ) study of ECAL
- > Mechanical structure study of ECAL prototype
- > ECAL prototype progress

CEPC粒子流量能器专题讨论会暨CEPC重点研发计划量能器课题交流

Outline

>Introduction: requirements of ECAL performance and prototype

ECAL Optimization and Unit study

- Simulation and Optimization
- Photon sensor
- Scintillator strip
- Readout Electronics

Prototype progress and schedule until BT

➤Conclusion

SiPM study

- SiPM gain calibrated by SPS, 1.3×10^5 >
- SiPM effective pixels increase with the photon width >
- SiPM response can be described well with the theoretic formula >
- Through correction SiPM dynamic range can up to 16,000 photons > with less than 1% error with 10k pixles

• Area: $1mm \times 1mm$

• Size: 10µm

• Pixels: 10K

SiPM study

Pixel	10000	4500	1600
MIP LY / p.e.	20	50	60
PDE / %	10	25	30
Mean / GeV	124.79	124.88	111.45
σ/Mean	1.57%	1.58%	2.62%

• SiPM with more pixel larger than 10000 is not required

Scintillator strips study

- > Three classes coupling mode i.e. side-end, bottom-end and bottom-center
- > Light outputs along the length of the scintillator strip is non-uniformity, degrades the energy resolution
- > Bottom-center coupling have the minimum non-uniformity
 - Avoiding the dead area between scintillators
 - Simplifying scintillators assembling process
 - Enabling to extend the SiPM area with more pixels

EBU SP2b 144channels

EBU SP2e 210channels

EBU SP2e technological board 10

- > 210 channels readout with 6 SP2E chips divided into 5 rows and 42 columns
- > Total thickness is controlled under 6mm (< 1mm deviation) excluding DIF
- > LED calibration and temperature monitor can achieve
- > 106/108 channels can distinguish MIP signal successful

LED calibration

- > Check all channels SiPM response
- > Calibration SiPM gain by single photon electron spectrum
- > Calibration the ratios of high gain versus low gain
- > Define linearity range of High gain mode

Temperature monitor

- 16 temperature sensor distribution on the EBU
- Normalized calibration is needed
- 0.1 °C temperature precision can achieved
- Temperature feedback and DAC compensation online inaccessible

Wrapped and assembled in SIC

Status and schedule

- ✓ EBU single layer prototype produce and test
- ✓ DIF single layer produce and DAQ system
- Mechanical structure design and single layer produce
- ✓ SiPMs and scintillators study and purchase

Conclusion

- > ECAL optimization and unit (SiPM, scintillator) study are finished
- > Readout electronics revision and finally for prototype are prepared
- > Components purchase finished: SiPMs and scintillators etc...
- > Mechanical structure and cooling design finished
- > EBU2e single layer 106/108 channels MIP test well
- > LED calibration and temperature monitor need more investment
- > Currently, one and half months behind expected, everything's going in the right direction

Additional

Electronics pedestal

SiPM w/o HV

- Pedestal mean various observable for different chips
- Pedestal sigma independent on the chips

SiPM working voltage

- SiPM V operation have almost 4V various, due to different batch production
- Pedestal sigma variance mostly dependent on the V operation of SiPM

SiPM working voltage

- DAC compensation SiPM bias voltage
- Configure SiPM working at operation voltage for each channel

SPS

15	2400		
19	2700		
23	2800		great
18	2600		general
22	2900		bad
26	2750		failed
75	2850		
77	2850		
79	2850		
162	2500		
158	2670		
154	2850		
163	2400		
159	2430		
155	2420		