

Toward the precise determination of the disconnected quark diagram

(Ziwen Fu)

10/11/2019

四川大学原子核科学技术研究所(720所)

热烈欢迎来自全国的格点QCD专家 莅临四川大学指导工作

有朋友方本人物学生

四川大学有格点QCD的历史渊源

- ●郑希特教授是我国第一代格点人之一
- ●王顺金教授
 - 光锥QCD等效场论与介子结构 用格点QCD研究真空的拓扑结构
- ●吕晓夫教授涉及格点QCD

Motivation

(Why disconnected quark diagram?)

OF UTAH

1: MILC Study of Scalar Meson(标量介子)

- Carleton E. DeTar, <u>John B. Kogut</u>, <u>Measuring the Hadronic Spectrum of the</u> Quark Plasma, Phys.Rev. D36 (1987) 2828
- Carleton E. DeTar, <u>Teiji Kunihiro</u>, <u>Linear σ Model With Parity Doubling</u>, Phys.Rev. D39 (1989) 2805

More than **six years** of Ph.D study on scalar mesons

Teiji Kunihiro et al, Scalar meson in lattice QCD, Phys. Rev. D 70, 034504 (2004)

C. Bernard, C. DeTar, Ziwen Fu, S. Prelovsek, Scalar meson spectroscopy with lattice staggered fermions, Phys. Rev. D 76, 094504 (2007)

First meet disconnected quark diagrams

Two diagrams appearing in the sigma correlation

- Teiji Kunihiro et al, Phys. Rev. D 70, 034504 (2004)
- **Q. Liu**, PoS LAT2009, 101 (2009)
- C. Bernard, C. DeTar, Ziwen Fu, S. Prelovsek, Phys. Rev. D 76, 094504 (2007)
- Ph.D dissertation gives the details (FFT, etc)

Motivation

2: 2006~2009 美国标准技术研究院 (标准技量局) 中子研究中心任客座研究员 (Guest Researcher)

(Neutron scattering)中子散射:

NIST Center for Neutron Research (NCNR)

Experiment, Fit, modeling, Code development.

Y. Kuramashi et al, Phys. Rev. Lett.
71 2387 (1993).
M. Fukugita et al, Phys. Rev. D
52 3003 (1995).

Lattice determination of the disconnected quark diagram

Case 1: Two-point correlation

C. Bernard, C. DeTar, Ziwen Fu, S. Prelovsek, Phys. Rev. D 76, 094504 (2007) 510 24³64 m_π=250MeV a=0.12fm, MILC RevModPhys.82.1349
 Coding: 2 Years, Calculation: 2 Years, Others: 2 Years. FFT
 中国格点QCD发展战略研讨会(2019/10/11 成都科华苑宾馆)

FFT Algorithm:

- 1) Z₂ Technique
- 2) Improve the Heller's code (100G Memory?)
- 3) Concrete code is in detail described in Dissertation

C. Bernard, C. DeTar, Ziwen Fu, S. Prelovsek, Phys. Rev. D 76, 094504 (2007) 510 24³64 m_{π} =250MeV a=0.12fm, MILC RevModPhys.82.1349 Calculation: 2 Years, 300MFlops(免费) 600MFlops MILC aim: 800MFlops

计算资源

Curreently work on:MILC work:2 Years $40^{3}96$ $m_{\pi} = 240 \text{MeV} a = 0.09 \text{ fm}$ $am_{\pi} = 0.105$ (100 年) $48^{3}144$ $m_{\pi} = 300 \text{MeV} a = 0.06 \text{ fm}$ $am_{\pi} = 0.094$ Now:2 Years $56^{3}144$ $m_{\pi} = 260 \text{MeV} a = 0.06 \text{ fm}$ $am_{\pi} = 0.078$ Now:2 Year $64^{3}144$ $m_{\pi} = 230 \text{MeV} a = 0.06 \text{ fm}$ $am_{\pi} = 0.0667$ $\square \text{ $$P$}$?(DDR4)

四川大学高性能计算中心(SCU_HPC)
辐射物理国家重点实验室计算中心(ITER)
等离子体重点实验室计算中心(ITER苟富均)
格点工作站(傅子文)

●其他

•2GFlops ~ 10GFlops

伟人说: 一万年太久,只争朝夕

四川大学高性能计算中心

Welcome to HPC Center	!!!
login node	

17	16 cores	64G mem
18	16 cores	64G mem

node

node

nc

n

compile node

node201 16 cores 64G mem

computing nodes

ode19-20	28 cores	128G mem 2*K80
ode21-53	28 cores	192G mem

node61-67 56 cores 512G mem

100 Jobs 1/3 内存

辐射物理国家重点实验室计算中心

computing nodes					
Node 类1	(若干)	36 cores	128G mem 2*K80		
Node 类2	(若干)	36 cores	256G mem 2*K80		
Node 类3	(若干)	72 cores	512G mem 最新GPU		

主要合作者 陈旭

2019年度四川省科技进步奖一等奖

多功能直线等离子体装置研制及应用 苟富均、陈旭、陈波、陈建军

等离子体重点实验室计算中心(ITER苟富均)

计算工作? 10GFlops 普及格点QCD

Lattice determination of the disconnected quark diagram

Case 2: Three-point correlation $\sigma \rightarrow \pi \pi$

Wang, Lingyun; Fu, Ziwen; Chen, Hang,arXiv:1702.08337 $400 \ 40^396 \ m_{\pi} = 240 MeV \ a = 0.09 fm$

Preliminary results

Cheng Hang

Wang, Lingyun, Fu, Ziwen, Cheng Hang, arXiv:1702.08337

$$\Gamma_{3} = f_{SA\pi} \Big[P(E_{S}, E_{\pi} + E_{A}) e^{-E_{\pi}(t_{S} - t_{\pi})} e^{-E_{A}(t_{S} - t_{A})} + P(E_{A}, E_{S} + E_{\pi}) e^{-E_{S}(t_{S} - t_{A})} e^{-E_{\pi}(t_{\pi} - t_{A})} + P(E_{\pi}, E_{S} - E_{A}) e^{-E_{S}(t_{S} - t_{\pi})} e^{-E_{A}(t_{\pi} - t_{A})} \Big],$$

$$f_{SA\pi} \equiv g_{SA\pi} \frac{\sqrt{Z_S(\mathbf{q}_S) Z_A(\mathbf{q}_A) Z_\pi(\mathbf{q}_\pi)}}{8E_S(\mathbf{q}_S) E_A(\mathbf{q}_A) E_\pi(\mathbf{q}_\pi)}. \qquad P(\omega, E) \equiv \frac{\sinh(\omega)}{\cosh(\omega) - \cosh(E)}.$$

Raul A. Briceño, Jozef J. Dudek, Robert G. Edwards, and David J. Wilson, Isoscalar $\pi\pi$ Scattering and the σ Meson Resonance from QCD PRL 118, 022002 (2017)

$$g_{\sigma\pi\pi}^2 = \lim_{s \to s_0} (s_0 - s)t(s)$$

$$g_{\sigma\pi\pi}^2 = \lim_{s \to s_0} \frac{s_0 - s}{4\pi t(s)}$$

Improve the signals?

Phys. Rev. D 94, 034505 (2016)

$$R_{NS}^{2} \propto \sqrt{\frac{1}{N_{\text{cfg}}N_{\text{slice}}L^{3}}} \exp[(E_{M} - m_{\pi})t].$$
$$R_{NS}^{4} \propto \sqrt{\frac{1}{N_{\text{cfg}}N_{\text{slice}}L^{3}}} \exp[(E_{\pi}(\mathbf{p}) + E_{\pi}(\mathbf{q}) - 2m_{\pi})t]$$

Gauge Configurations (N=1000)
Time slices (T=96,144,192.,etc)
Big lattice (L=64?)
Fine lattice (a=0.06fm, 0.045fm)
Others (杨一玻, etc)

Currecutly work on: $L^{3}T = 40^{3}96$ $am_{\pi} = 0.105$ $L^{3}T = 48^{3}144$ $am_{\pi} = 0.094$ $L^{3}T = 56^{3}144$ $am_{\pi} = 0.078$ $L^{3}T = 64^{3}144$ $am_{\pi} = 0.0667$

FFT Algorithm:

1) Z₂ Technique + Moving wall source technique
 2) Improve the Heller's code (100G Memory?)
 3) Concrete code will be published soon...

Currecutly work on: $40^{3}96 \quad m_{\pi} = 240 \text{MeV} \ a = 0.09 \ fm \quad am_{\pi} = 0.105$ $48^{3}144 \quad m_{\pi} = 300 \text{MeV} \ a = 0.06 \ fm \quad am_{\pi} = 0.094$ $56^{3}144 \quad m_{\pi} = 260 \text{MeV} \ a = 0.06 \ fm \quad am_{\pi} = 0.078$ $64^{3}144 \quad m_{\pi} = 230 \text{MeV} \ a = 0.06 \ fm \quad am_{\pi} = 0.0667$

To be published soon?

Currecutly work on: $L^{3}T = 40^{3}96$ $am_{\pi} = 0.105$ $L^{3}T = 48^{3}144$ $am_{\pi} = 0.094$ $L^{3}T = 56^{3}144$ $am_{\pi} = 0.078$ $L^{3}T = 64^{3}144$ $am_{\pi} = 0.0667$

中国格点QCD发展战略研讨会(2019/10/11 成都科华苑宾馆) $L^{3}T = 64^{3}144$ am_π = 0.0667

Lattice determination of the disconnected quark diagram

Case 3: Four-point correlation $\pi\pi \rightarrow \pi\pi$

Y. Kuramashi et al, Phys. Rev. Lett. **71** 2387 (1993). M. Fukugita et al, Phys. Rev. D **52** 3003 (1995).

Y. Kuramashi et al, Phys. Rev. Lett. **71** 2387 (1993).M. Fukugita et al, Phys. Rev. D **52** 3003 (1995).

$$R^{X}(t) = \frac{C^{X}(0,1,t,t+1)}{C_{\pi}(0,t)C_{\pi}(1,t+1)}$$

PHYSICAL REVIEW D 87, 074501 (2013)

604 40³96 a m_{π} =0.105

$$R_{NS}^4 \propto \sqrt{\frac{1}{N_{\text{cfg}}N_{\text{slice}}L^3}} \exp[(E_{\pi}(\mathbf{p}) + E_{\pi}(\mathbf{q}) - 2m_{\pi})t],$$

Phys. Rev. D 98 014514 (2018)

FFT Algorithm:

- 1) Moving wall source technique
- 2) Improve the Heller's code (100G Memory?)
- 3) Concrete algorithm is published in Phys. Rev. D 98 014514 (2018)

Currecutly work on: $40^{3}96 \quad m_{\pi} = 240 \text{ MeV } a = 0.09 \text{ fm}$ $48^{3}144 \quad m_{\pi} = 300 \text{ MeV } a = 0.06 \text{ fm}$ $56^{3}144 \quad m_{\pi} = 260 \text{ MeV } a = 0.06 \text{ fm}$ $64^{3}144 \quad m_{\pi} = 230 \text{ MeV } a = 0.06 \text{ fm}$

Toward the precise determination of the disconnected quark diagram

Comparable to HSC

Raul A. Briceño, etc (Hadron Spectrum Collaboration), Isoscalar $\pi\pi$ Scattering and the σ Meson Resonance from QCD PRL 118, 022002 (2017)

 $32^3256 \quad a_t m_{\pi} = 0.069 \quad \text{Anisotropic configurations (500)} \quad m_{\pi} = 236 \text{MeV} \quad (011)$

Toward the precise determination of the disconnected quark diagram

 $C_{\pi\pi}^{V}(\mathbf{p}, t_{4}, t_{3}, t_{2}, t_{1}) = \sum_{\mathbf{x}_{2}, \mathbf{x}_{3}} \cos(\mathbf{p} \cdot (\mathbf{x}_{2} - \mathbf{x}_{3})) \langle \operatorname{Tr}[G_{t_{1}}^{\dagger}(\mathbf{x}_{2}, t_{2})G_{t_{1}}(\mathbf{x}_{2}, t_{2})] \operatorname{Tr}[G_{t_{4}}^{\dagger}(\mathbf{x}_{3}, t_{3})G_{t_{4}}(\mathbf{x}_{3}, t_{3})] \rangle$

 $-\delta_{\mathbf{p},\mathbf{0}} \sum_{\mathbf{x}_2,\mathbf{x}_3} \langle \operatorname{Tr}[G_{t_1}^{\dagger}(\mathbf{x}_2, t_2)G_{t_1}(\mathbf{x}_2, t_2)\rangle \langle \operatorname{Tr}[G_{t_4}^{\dagger}(\mathbf{x}_3, t_3)G_{t_4}(\mathbf{x}_3, t_3)]\rangle,$ Phys. Rev. D **98** 014514 (2018)

Calculation Time

processing t=41

CG: time:4.06e+04 iters:3509 GFLOPS:3.87 at c=0 CG: time:4.07e+04 iters:3555 GFLOPS:3.92 at c=1 CG: time:4.02e+04 iters:3494 GFLOPS:3.89 at c=2

processing t=42

CG: time:4.05e+04 iters:3557 GFLOPS:3.94 at c=0 CG: time:4.09e+04 iters:3572 GFLOPS:3.91 at c=1 CG: time:4.04e+04 iters:3529 GFLOPS:3.91 at c=2

processing t=43

CG: time:4.05e+04 iters:3476 GFLOPS:3.84 at c=0

CG: time:4.01e+04 iters:3505 GFLOPS:3.92 at c=1

CG: time:4.10e+04 iters:3589 GFLOPS:3.92 at c=2 processing t=44

CG: time:4.01e+04 iters:3484 GFLOPS:3.89 at c=0 CG: time:4.04e+04 iters:3540 GFLOPS:3.92 at c=1 CG: time:4.03e+04 iters:3528 GFLOPS:3.92 at c=2 processing t=45

CG: time:4.07e+04 iters:3536 GFLOPS:3.89 at c=0 CG: time:4.12e+04 iters:3610 GFLOPS:3.92 at c=1 CG: time:4.01e+04 iters:3513 GFLOPS:3.93 at c=2 processing t=46

CG: time:4.03e+04 iters:3522 GFLOPS:3.91 at c=0

中国格点QCD发展战略研讨会(2019/10/11 成都科华)

 $L^3T = 64^3144$

64144*f* 21*b*746*m*0018*m*018*a*.1062

144*3*40000 ~ **250**夭

十年磨一剑 砺得梅花香

2000~2019 20年 **2009~2019 10**年 再战10年

战略研讨会(2019/10/11 成都科华苑宾馆)

Fakeshi YAMAZAKI , University of Tsukuba (10年前			(10年前)		
通道					共振态
$I = 2 \pi \pi$	Ο	Ο	X	X	
$I = 1 \pi \pi$	Ο	Ο	Ο	X	ρ
$I = 0 \pi \pi$	0	0	0	<u> </u>	σ
$I = 3/2 \pi K$	Ο	Ο	X	X	
$I = 1/2 \pi K$	Ο	Ο	Ο	X	K
I = 1 KK	Ο	Ο	X	X	
$I = 1 K\overline{K}$	Ο	Ο	Ο	X	
$I = 0 K\overline{K}$	0	0	0	0	
	Easy	Easy	Hard	impossible	
●HSC不答 ●进一步研	应(非常 究 I=0 K	出色) 【 散射			

计算量太大, 如何克服

●软件 (候氢GPU等, 几十倍?) ●硬件 (1T内存, 陈旭, 预计计算缩短到一年以) ●与兄弟单位合作(585等)

更大的格点计算(643 192)在进行中....

总结与展望

●积累的数据可以做点其它事情:

- -标量介子共振态参数的有效确定? -**中子散射**
- -天体物理(宇宙学) -其它

Chinese Physics C Vol. 39, No. 8 (2015) 083101

与兄弟单位合作 -核反应截面(九院:可控核反应)

FORBS