Three-photon decay of J/psi from Lattice QCD

Yu Meng Supervisor Chuan Liu

Peking University

10/10/2019

イロト イポト イヨト イヨト 三日

Outline

Outline

- Experiments on $J/\psi \to 3\gamma$
- How to calculate $\langle \gamma \gamma \gamma | J/\psi \rangle$ on lattice?
- Lattice simulation
- Discussion

Experiments on $J/\psi \to 3\gamma$

Experiments on $J/\psi
ightarrow 3\gamma$

CLEO

Phys.Rev.Lett.101,101801(2008)

$$\mathcal{B}(J/\psi \to 3\gamma)$$

=(1.2 ± 0.3 ± 0.2) × 10⁻⁵

CLEO

Phys.Rev.Lett.101,101801(2008)

$$\mathcal{B}(J/\psi \to 3\gamma)$$

=(1.2 ± 0.3 ± 0.2) × 10⁻⁵

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

BESIII

Phys.Rev.D.87,032003(2013)

BESIII

Phys.Rev.D.87,032003(2013)

 $N_{J/\psi \to 3\gamma} = 113$

How to calculate $\langle \gamma \gamma \gamma | J/\psi \rangle$ on lattice ?

LSZ formula

The decay amplitude

$$\begin{aligned} \langle J/\psi(p,\lambda_0)|\gamma(q_1,\lambda_1)\gamma(q_2,\lambda_2)\gamma(q_3,\lambda_3)\rangle &= \lim_{t_f - t \to \infty} e^3 \frac{\epsilon_{\mu}(q_1,\lambda_1)\epsilon_{\nu}(q_2,\lambda_2)\epsilon_{\rho}(q_3,\lambda_3)\epsilon_{\alpha}}{\frac{Z_m}{2E_p}e^{-E_p t_f}} \\ &\times \left(\int dt^{'} dt_i e^{-\omega_2|t^{'} - t|}e^{-\omega_1|t_i - t^{'}|}\Gamma_{\mu\nu\rho\alpha}(t_i,t^{'},t)\right) \end{aligned}$$

where

$$\Gamma_{\mu\nu\rho\alpha}(t_i, t', t) = \langle 0| T\{\hat{\mathcal{O}}_{\alpha}(\mathbf{0}, t_f) \int d^3 \mathbf{z} e^{i\mathbf{q}_3 \cdot \mathbf{z}} j^{\rho}(\mathbf{z}, t) \int d^3 \mathbf{y} e^{i\mathbf{q}_2 \cdot \mathbf{y}} j^{\nu}(\mathbf{y}, t') \int d^3 \mathbf{x} e^{i\mathbf{q}_1 \cdot \mathbf{x}} j^{\mu}(\mathbf{x}, t_i)\} |0\rangle$$

Denote the amplitude

 $M = \epsilon_{\mu}(q_1, \lambda_1) \epsilon_{\nu}(q_2, \lambda_2) \epsilon_{\rho}(q_3, \lambda_3) \epsilon_{\alpha}(p, \lambda_0) \mathcal{M}_{\mu\nu\rho\alpha}$

< □ ト < □ ト < 巨 ト < 巨 ト < 巨 ト 三 の Q (~ 9 / 27

Connected diagram

- The 'sequential' sources are placed at x, z.
- Local current $j_{\mu} = \bar{c} \gamma_{\mu} c$ are used.
- Renormalization constant $Z_V = 0.6095(03)$. Nucl.Phys. B887 (2014) 19-68

3

イロト イボト イヨト イヨト

Decay width

۲

۲

$$\Gamma(J/\psi \to 3\gamma) = \frac{1}{3!} \frac{1}{2M_V} \int \frac{d^3 q_1}{(2\pi)^3 2\omega_1} \frac{d^3 q_2}{(2\pi)^3 2\omega_2} \frac{d^3 q_3}{(2\pi)^3 2\omega_3} (2\pi^4) \delta(p - q_1 - q_2 - q_3) \overline{|\mathcal{M}|^2}$$
$$= \frac{m}{1536\pi^3} \int_0^1 dx_1 \int_{1-x_1}^1 dx_2 T(x_1, x_2)$$

$$T \equiv \overline{|M|^2} = \sum_{\lambda_1, \lambda_2, \lambda_3} \frac{1}{3} \sum_{\lambda_0} |M|^2 = \frac{1}{3} \mathcal{M}_{\mu\nu\rho\alpha} \mathcal{M}^*_{\mu\nu\rho\alpha} = \frac{1}{3} |\mathcal{M}|^2$$

$$x = 1 - \frac{s_{23}}{m^2}, y = 1 - \frac{s_{31}}{m^2}, s_{jk} = 2q_j \cdot q_k$$

$$T(x, y, Q_1^2, Q_2^2, Q_3^2) = T(x, y) + b \times (\sum_{i=1}^3 Q_i^2)$$

< □ > < □ > < ■ > < ≧ > < ≧ > < ≧ > ≧ > < ≥ < ○ Q (~ 11/27

Lattice setup

Ensemble	β	a(fm)	V/a^4	$a\mu_l$	$m_{\pi}[MeV]$	N _{conf}
I	1.95	0.0823	$32^3 \times 64$	0.0055	372	60

Parameters ($|Q_i^2| \ll 1$)

Q_1^2	Q_3^2	n_1	n_3	n_2	ω_1	ω_3	ω_2	x	y	$Q_2^2(GeV^2)$
0	0	002	101	-10-3	0.3952	0.2786	0.6122	0.6147	0.9521	0.004
0	0	211	-2-1-2	001	0.4865	0.5976	0.2028	0.7552	0.3154	-0.0154
0	0	201	-30-1	100	0.4426	0.6309	0.2125	0.6883	0.3305	-0.0385
0	0	201	-201	00-2	0.4426	0.4426	0.4008	0.6883	0.6234	-0.0483
0	0	012	-1-2-1	11-1	0.4426	0.4856	0.3578	0.6883	0.5565	-0.0730

Four-point function

Figure: $M_{\mu\nu\rho\alpha}(t_i, t) = M_{\mu\nu\rho\alpha}(t_i, \sum t', t)$

<ロ > < 部 > < 書 > < 書 > 差 うへで 14/27

On-shell fitting

 $T = 1.000(12) \times 10^{-4}$

<ロト < 部 > < 目 > < 目 > 目 > < 目 > 目 の Q (* 16 / 27

T-amplitude

T-amplitude

 $\mathcal{B}(J/\psi \to 3\gamma) = 3.75(0.12)(1.50) \times 10^{-5}$

<□ ト < 部 ト < 注 ト < 注 ト 注 目 の Q (?) 18 / 27

Error sources

 $\mathcal{B}(J/\psi \to 3\gamma) = 3.75(0.12)(1.50) \times 10^{-5}$

(a) 0.12— statistical error, Z_V error, sum error, on-shell fitting error.

(b) 1.50— Twisted-mass chiral error.

Table: Permuting the photon momentum $(k_1 \leftrightarrow k_3)$

Q_1^2	Q_3^2	n_1	n_3	n_2	ω_1	ω_3	ω_2	x	y	$Q_2^2(GeV^2)$	$T(\times 10^{-4})$
0	0	002	101	-10-3	0.3952	0.2786	0.6122	0.6147	0.9521	0.004	0.1309(19)
0	0	101	002	-10-3	0.2786	0.3952	0.6122	0.4332	0.9521	0.004	0.1793(33)

What is direct observable for experiment about three-body decay ?

Discussio

Dalitz plot

Discussio

Dalitz plot

Equal-energy enhancement region is discovered.

Discussion

Compare with experiment

Compare with experiment

$$T = \frac{2}{9\pi}m \times \alpha^{6} \times \left[\left(\frac{1-x}{y(2-x-y)}\right)^{2} + \left(\frac{1-y}{x(2-x-y)}\right)^{2} + \left(\frac{x+y-1}{(xy)}\right)^{2}\right]$$

Conclusion and outlook

Conclusion

• First calculation of $J/\psi \rightarrow 3\gamma$ on lattice is given.

 $\mathcal{B}(J/\psi \to 3\gamma) = 3.75(0.12)(1.50) \times 10^{-5}$

- We propose a general method to deal with three-body decay problem by combining lattice method and dalitz plot analysis.
- A special dalitz structure of $J/\psi\to 3\gamma$ is discovered which can be checked in the future by experiment.

Outlook

• A high precision analytical T-amplitude, using for the dalitz plot analysis for experiment, would be obtained.

Thank you!

Discussion

System errors

• permute the photon momentum $(k_1 \leftrightarrow k_3)$

Q_{1}^{2}	Q_{3}^{2}	n_1	n_3	n_2	ω_1	ω_3	ω_2	x	y	$Q_2^2(GeV^2)$	$T(\times 10^{-4})$
0	0	002	101	-10-3	0.3952	0.2786	0.6122	0.6147	0.9521	0.004	0.1309(19)
0	0	101	002	-10-3	0.2786	0.3952	0.6122	0.4332	0.9521	0.004	0.1793(33)

Table:

Table:

$$\mathcal{M}_{\mu\nu\rho\alpha} \times 10^{-3}, [x, y] = [0.4332, 0.9521]$$

α	1	2	3
111	-13.90(23)	-2.89(23)	-4.11(17)
112	-3.70(18)	8.47(20)	-1.02(14)
121	-4.76(13)	-4.81(14)	1.13(12)
122	1.23(10)	4.43(14)	-4.66(11)
211	-4.36(17)	1.66(11)	1.92(12)
212	-4.43(14)	5.19(13)	-5.16(16)
221	7.54(21)	3.31(15)	3.49(13)
222	3.21(21)	-13.49(20)	0.33(9)

 $\mathcal{M}_{\mu\nu\rho\alpha} \times 10^{-3}, [x, y] = [0.6147, 0.9521]$

α	1	2	3
111	-15.56(30)	-2.43(33)	-7.42(26)
112	-4.29(37)	1.04(29)	3.34(16)
121	-4.46(26)	-7.33(34)	2.40(17)
122	-1.82(15)	2.19(24)	5.70(14)
211	-3.77(14)	0.029(256)	-1.91(10)
212	-5.69(20)	5.25(19)	-5.91(15)
221	9.96(25)	4.70(26)	-4.60(22)
222	3.10(22)	-14.93(36)	1.04(17)