CEPC-ACTS integration Review and Perspective

Status of CEPC-ACTS framework Status of Geometry and TPC/FST alternative A plan & roadmap to be discussed

CEPC-ACTS taste software

https://gitlab.cern.ch/jinz/acts-framework-cepc, aim to

- Keep the progress in this repository for the moment
- trace the updated version of CEPC-ACTS detector(without TPC)
- Include all available examples in the master branch
- facilitate tracking fans to checkout and run easily
 - Possible to profit from the stand-alone examples, to start with your interested part and dive into TRACKING

Examples are tested with CEPC_V0 detector

- Geometry
- Propagation (particle motion in detector)
- GeatinoRecording (record material with Geant4 plugins)
- FATRAS (Fast Atlas Tracking Simulation)
- Kalman

Geometry Example

- The Geometry example is to build geometry internally, output some visible objs
- The obj files only show the sensitive detectors, not the real tracking geometry
- Subdetector: barrel + endcap
- ./ACTFWDD4hepGeometryExample --dd4hepinput ../../Detectors/DD4hepDetector/compact/CEPC/cepc_v04_master.xml --geo-subdetectors Tracker_2 Tracker_3 Tracker_1 ETD --output-obj 1

300

400

Propagation

- Generate n events (each contains substantial toy tracks)
- Recording the steps of different type (navigation Geomet (type==0 ...))
- Flexible debug tool for the tracking geometry ٠
- ./ACTFWDD4hepPropagationExample --dd4hepinput ../../Detectors/DD4hepDetector/compact/CEPC/cepc v04 master.xml -n 10 --bfvalues 0 0 3 -- output-root 1

detectors (w/o SET ETD)

detectors (w/o SET ETD)

GeatinoRecording

- Use Geant4 Plugin to record the material (with Geant4 extrapolation)
- Geant 4 only allows single thread

./ACTFWGeantinoRecordingExample -n10 --dd4hep-input ../../Detectors/DD4hepDetector/compact/FCChhBaseline/FCChh_DectEmptyMaster.x ml --output-root true -j 1

tv__tree->Draw("mat_y:mat_x","abs(mat_y)<100 && abs(mat_x)<100","", 10000, 0);

mat_y:mat_x {abs(mat_y)<100 && abs(mat_x)<100}

tv_tree->Draw("t_X0:v_eta>>h(100,-4,4,100,0,0.05)","","", 10000, 0);

./ACTFWDD4hepFatrasExample --dd4hepinput ../../Detectors/DD4hepDetector/compact/CEPC/cepc_v04_master.xml -n 10 --bf-values 0 0 3 --output-root 1

Kalman filter

Currently inserted in the FATRAS - split out by Moritez in progress

./ACTFWDD4hepFatrasExample --dd4hep-input ../../Detectors/DD4hepDetector/compact/CEPC/cepc_v04_master.xml --evginput-type gun --evg-pileup 0 --pg-nparticles 10000 --pg-eta-range 1.3 1.3 --pg-phi-range 0 0 --pg-pt-range 10 10 --output-root 1 --fitted-tracks test_tracks -n 1 Filtered VS Predicted

Status of CEPC-ACTS detector geometry

CEPC CDR detector

- baseline concept Silicon + TPC
- FST Full silicon
- IDEA Silicon + drift chamber

Now : V0 (baseline without TPC)

Next : V1 (impl two alternatives TPC/Full silicon) + more details

CEPC-ACTS detector V0

CEPC-ACTS detector (V0) inner tracker baseline concept

Silicon trackers : VTX + SIT + FTD + SET + ETD

No TPC/silicon detector

Material budget need to update

Some bugs in the tracking geometry

Resolution of Smoothing from different layers VTX + SIT : some layers bad smoothing res

CEPC-ACTS detector V1

CEPC-ACTS detector (V1) inner tracker

- Fix bugs in V0
- Add TPC detector
- Add full silicon tracker as an alternative
- Add some material -> apply material mapping

Full silicon version – not difficult

TPC – first try a simple surface-based version

Material mapping : will release soon

For this step, we can gain full experiences from the OpenDataDectector

The OpenDataDetector

TrackML detectors -> OpenData detector in ACTS

TPC

3-D spacepoint

Low material budget

High density spacepoint

TPC Options

Surfaces based concept – personally prefer at first the stage

- 220 Cylinder surfaces consistent with Pad row
- Define measurement on surface

No surface based concept

- Propagate with denseEnvironment concept
- Create Surface at measurement
- Extremely Different in how to do filter update

No surface based concept – free measurement update – under discussion now

More options??

TPC option (1)

Surface-based concept

- Geometry: 220 cylindrical nested surfaces along 220 pad rows, filling with harmonious material, 220 layers readout
- **Propagation**: DenseEnvironment propagation (energy loss in each step)
- FATRAS: using 220 surfaces propagation, make it quite simple at first stage
- Digitization: a Cylinder Digitization model is needed (or even more naive version)
- Kalman filter: traditionally on measurement surface

Pre Roadmap of the CEPC integration

	2019	Q4	2020	Q1	Q2	Q3	Q4
Hough trackfinder						•	•
ТРС	method(1)						
全硅							
Debug/材 料mapping	P <u>robat</u> start	oly 🔶					
Full details 探测器							
ACTS其他 开发							
Layout 研究 优化							

Ideal: full inner tracker (TPC/FST) + details & material mapping + some layout optimization

Propagation

TPC strategy (3)

The tracking geometry design is quite determined with the strategy how you implement your propagation -> since tracking is to deal with particle motion issue

Silicon detector carries 'big' materials on surface <->Layer concept

 Propagator must act from surface to surface in terms of discontinuous materials

TPC and other gas chamber issue: if we have continues material / measurement, the layer concept is meaningless

- much time waste
- Meaninglessly material mapping
- Quite confusion of Geometry issue and the Readout issue

Concept we will deal with

Sense no one tries gas chamber yet(TRT is based on the 40 layers concept), here is the list we should refer to

- Geometry
- Propagation
- FATRAS
- Digitization
- Fitting

TPC strategy - Geometry

Quite simple geometry

- A cylinder with gas filling it
- With readout on the two readout plane

TPC strategy – Propagation

In terms of the TPC gas filled volume, the navigation is just from start to the outer cylinder surface (current layer concept TRT has more than forty layers to navigate)

The propagate extensionList in ACTS

- Default (for the silicon base concept) ->Silicon
 - No energy loss between surfaces
- DenseEnvironment (for the calo) ->TPC probabaly
 - Calculate energy loss along the path

Silicon : add materialEffect only at surfaces + empty between surfaces

Gas : add materialEffect along the road + no surfaces inside the volume

TPC strategy - FATRAS

FATRAS is based on the propagation in ACTS

Add an actor to recording the position along the track with fixed stepSize to create "measurement"

TPC strategy - Digitization

We have to write the digitization ourselves -> that is an issue never be rounded for every experiment

But could we just take the EndCap plane as one readout Plane and consider it as a sensitive surface as silicon and extend it to 3-D with drift distance along Z direction? In that way we can use exited PlaneDigitization models in the ACTS(as same as the CEPC detector)

TPC strategy – Fitting

Measurement list as the Input of Fitting/Propagation

Take the Position of measurement (pos, posCov)

Propagate to the measurement with DenseEnvironment extension

Need to be considered carefully

Kalman update : x_pre + K * (mes – H * x_pre)

- The logic changes : update on Surface -> update globally
- Measurement define (id)
- The measurement dimension
- The H matrix description

At the start, we can simply do something in ACTS-core with

- define a cylinder geometry
- Densenvirment propagate
- Go through the detector ...

0

End-plate

Figure 3.8: Design of the end-plate and the service support wheel.

Figure 4.35: Three-point mounting of the readout chambers.

ReadOut Mechanical

ribs, the O-ring groove and threads for the three-point suspension, the pad plane PCB, and the auxiliary maximum deformation is 25 µm.

back plate.

Pad plane: made of multilayer printed circuit board (PCB) + Strong back + Trapezoidal aluminum frame

