
Discussion on flex cable

Mingyi Dong

2019.8.22

Module Flex cable

- Module flex cable is for all connections between the ASIC and the peripheral electronics
- The bare module is glued to the back side of the sensor with accurate positioning on the flex modules
- All the signals are wire bonded between the ASIC and the flex cable (HV between sensor and the flex cable)
- Connectors are used between the flex cable and the peripheral electronics

L shape design to reduce the total thickness of the flex cables

A maximum of 10 flex cables is stacked.

Type and Number of lines

From TDR

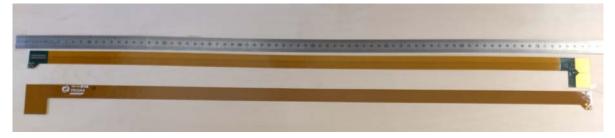
Signal name	Signal type	No. of wires	Comments	
HV	1 kV max.	1	Clearance	
POWER	$1 \times V$ dda, $1 \times V$ ddd, $1.2 V$	2	2 planes, $R < 2.7 \mathrm{m}\Omega\mathrm{cm}^{-1}$	
GROUND	Analog, Digital	1(2) plane(s)	Dedicated layer	
GROUND	Altaiog, Digital		$R < 0.7 \mathrm{m}\Omega\mathrm{cm}^{-1}$	
Slow control	Data, Ck (opt. + rst, error)	2 to 4	I ² C link	
Input clocks	320 MHz, Fast command e-link	4 or 8	CLPS	
	(opt. 40 MHz (L1))	4010	CLI 5	
Data out lines	Readout data (TOT, TOA, Lumi)	4 pairs	4 e-links differential CLPS	
ASIC reset	ASIC_rst	1	Digital	
Monitoring	Temperature, Vdda, Vddd	6	DC voltage	
Debugging	ASIC_debug	2	Analog	

• HV:1

Other lines

Type and Number of lines

From Maria Robles Manzano, JuanAn


Signal name	Signal type	No. of wires	Comments
HV	1 kV max.	1	Clearance
POWER	$1 \times Vdda, 1 \times Vddd, 1.2V$	2	2 planes, R < 2.7mΩcm ⁻¹
GROUND	Analog, Digital	2 planes	Dedicated layer $R < 0.7 m\Omega cm^{-1}$
Slow control	Data, Ck (opt. + rst, error)	2 or 4 single line	I ² C link
Input clocks	320 MHz, Fast command e-link(opt. 40MHz (L1))	2(differential pair) 2(differential pair)	CLPS
Data out lines	Readout data (TOT, TOA, Lumi)	4 differential pairs (2 for lumi data, 2 for time data)	4 e-links differential CLPS
ASIC reset	ASIC_rst	1	Digital
Monitoring	Temperature, Vdda, Vddd	6 (3 / ASIC)	DC voltage
Debugging	ASIC_debug	1 (common/ 2 ASICS)	Analog

Key points

- HV: 1 kV max.
 - Excellent Insulation , shielding
- Different Length: max. 750mm, (min. 250mm)
 - Signal attenuation
- Speed of the data transmission
 - 1.28Gbit s⁻¹ for the inner radius
 - 320Mbit s⁻¹ for the outer radius
- ASIC power supplies (1.2V)
 - a strong constraint on the flex plane resistance
 - To minimize the voltage drop and the power dissipation (< $200m\Omega$, / $2.7m\Omega$ cm⁻¹) for the longest cable
- Connectors
 - local additional enhanced plate for connectors

Make samples of the old version

- Four-layer design, L-shape
- A width of 39.5mm for module region, and A width of 19mm for the tail
- Length: 750mm, thickness: <350μm

- Already contacted the ShenNan compony in China
- Sent the gerber files from Marisol Robles from Mainz University
- 20 pieces will be made
- Have some discussion, and waiting for the feedback (quotation) from the company

Discussion

Components on the flex cables

- How to test them after we get the samples?
 - The university Mainz has the test system

New design