Pseudoscalar Quarkonium + γ at NLL+NLO accuracy

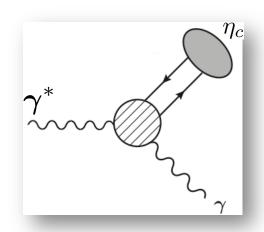
arXiv 1906.03275, H.S. Chung, J.H. Ee, DK, U. Kim, J. Lee, X. P. Wang

Daekyoung Kang

Fudan University

Outline

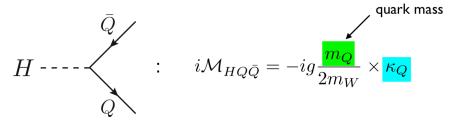
- Why exclusive quarkonium process?
- Theoretical approach
 - \Box hierarchy in energy scales Q, m_O , $m_O v^2$
 - ☐ logarithms and resummation
- Numerical results
 - resummation effect
 - comparison with previous results



Why exclusive quarkonium process?

Higgs decays into $J/\psi + \gamma$ is one of most promising channel that could measure the Yukawa couplings of the charm quarks at the LHC

Higgs-quark Yukawa coupling is given by



In the SM, $\kappa_Q = 1$

☐ Current CMS, ATLAS upper limits (95% CL) are ~10² times larger than SM values and they will be improved at high luminosity LHC.

```
ATLAS: 3.5 \times 10^{-4} \approx 117 \times \text{Br}(H \to J/\psi + \gamma)|_{\text{SM}} (36.1 fb<sup>-1</sup> at \sqrt{s} = 13 TeV) PLB 786 (2018) 134

CMS: 7.6 \times 10^{-4} \approx 260 \times \text{Br}(H \to J/\psi + \gamma)|_{\text{SM}} (35.9 fb<sup>-1</sup> at \sqrt{s} = 13 TeV) EPJC 79(2019) 94
```

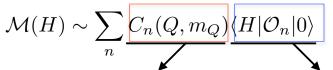
Why exclusive quarkonium process?

- \square $\eta_c + \gamma$ and $\chi_c + \gamma$ are measured by Belle and by BESIII
 - background channel in XYZ decays
 - □ benchmarking process w/ small samples before XYZ search
- Accurate theoretical predictions would be useful and it is a good place to test NRQCD predictions improved from previous lessons.
- from double quarkonium: large logarithms, v² corrections
- from polarization puzzle: power corrections of m_O/p_T

We focus on $\eta_c + \gamma$ production in e+e- annihilation improved by log resummuation (NLL), α_s corr (NLO), and v^2 and m_Q/Q power corrections

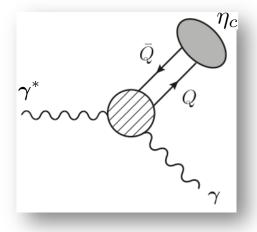
Hierarchy in energy scales

- \square 3 energy scales : Q (or \sqrt{s}), $2m_Q >> m_Q v^2$
- ☐ NRQCD allows separation between SD and LD



short-distance coefficient (perturbative $\gtrsim m_Q$)

NRQCD long-distance (decay) matrix elements (non-perturbative $\lesssim m_Q v$)



√ v =relative velocity

between quark and anti-quark

SD contains two scales:

$$r \equiv \frac{4m_Q^2}{Q^2}$$

r spreads in wide ranges

 $r \sim I$ in BESIII (3-4 GeV)

r ≈0.1 in Belle (10 GeV)

r ≈0.001 in Higgs/Z decay (100 GeV)

Log Log Log ···

 \Box SD at NLO contains log of r and it is large for small r.

$$\lim_{r \to 0} \sigma^{\text{fixed}}(r; \mu) = \sigma_0 \left[1 + \frac{\alpha_s C_F}{4\pi} c^{\text{sing}} + \langle v^2 \rangle c_{v^2}^{\text{sing}} \right]$$

$$c^{\text{sing}} = -\frac{2}{3} \left[(9 - 6 \log 2) \log r + 9(3 + \log^2 2 - 3 \log 2) + \pi^2 \right]$$

Logarithms are a generic feature in QFT at high energies and come from soft and collinear regions.

$$\underbrace{E_g} \qquad \text{probability} \sim \underbrace{\frac{1}{E_g(1-\cos\theta)}}_{\text{soft and collinear enhancements}} \xrightarrow{\text{probability}} \underbrace{\frac{1}{E_g(1-\cos\theta)}}_{\text{soft and collinear enhancements}} \xrightarrow{\text{probability}} \underbrace{\text{Log}(E_g) \operatorname{Log}(\theta)}_{\text{soft and collinear enhancements}}$$

Log Log Log ···

No problem with small log, the ordinary perturbative series works

$$\sigma = 1 + \alpha_s + \alpha_s^2 + \cdots \qquad \alpha_s < 1$$

☐ For a large log, resummed perturbation with log-power counting

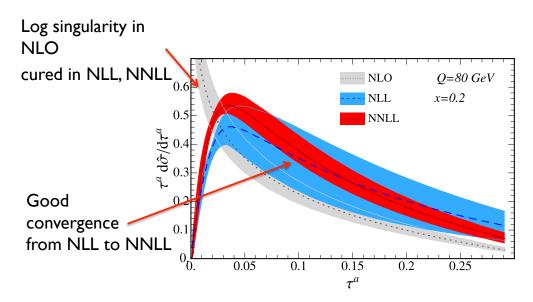
LO NLO NNLO
$$\sigma^{\rm sing} = 1 + \alpha_s L + \alpha_s^2 L^2 + \cdots \quad \text{Leading Log} \\ + \alpha_s + \alpha_s^2 L + \cdots \quad \text{Next to LL} \\ + \alpha_s^2 + \cdots \quad \text{NNLL}$$

$$\sigma = \sigma^{\text{sing}} + (v^2 \text{ corr.}) + (\text{power corr. of } O(r))$$

 \checkmark valid in both small and large r regions

Example: An event shape distribution

- We can get an idea about resummation effect by comparing results before and after resummation in this example.
- \square event shape (T^a) cross section contains $\mathsf{Log}[\mathsf{T}^a]$ c.f. $\mathsf{Log}[r]$



- ☐ large logs are under control after resummation
- □ NLO perturbative uncertainty is not reliable without resummation

Theoretical approach

Ordinary NRQCD factorization

$$\mathcal{M}(H) \sim \sum \underline{C_n(Q, m_Q)} \langle H | \mathcal{O}_n | 0 \rangle$$

☐ Light-cone approach and refactorization

$$\mathcal{M} \sim T_H(x,Q) \otimes \phi_H(x,m_Q)$$

$$\sum_n \phi_n(x,m_Q) \langle H|\mathcal{O}_n|0\rangle$$

- Hard-scattering kernel produces a pair of collinear quark and antiquark with fractional momentum 0<x<1 at scale Q
- LCDA is the probability amplitude for the quark pair scattering at scale m_O and later bounding into quarkonium at scale m^2 .
- factorization valid up to the leading power in m_O/Q

 η_c

$$\mathcal{M} \sim T_H(x,Q) \otimes \phi_H(x,m_Q)$$

Lepage and Brodsky, PRD, 1980 Efremov and Radyushkin, PLB, 1980

- ☐ The light-cone approach was known since 1980 for light mesons
- ☐ The heavy-quarkonium LCDA is refactorized

Wang and Yang, JHEP, 2014

$$\sum_{n} \phi_n(x, m_Q) \langle H|\mathcal{O}_n|0\rangle$$

LDMEs are only non-perturbative part and the rest are calculable in pert. theory

$$\phi_P(x,\mu) = \phi^{(0)}(x) + \frac{\alpha_s(\mu)}{4\pi}\phi^{(1)} + \langle v^2 \rangle \phi^{(v^2)} + O(\alpha_s^2, \alpha_s v^2, v^4)$$

$$\phi^{(0)} = \delta(x - \frac{1}{2})$$
 $\phi^{(v^2)} = \frac{\delta^{(2)}(x - \frac{1}{2})}{24}$

Resummation by RG evolution

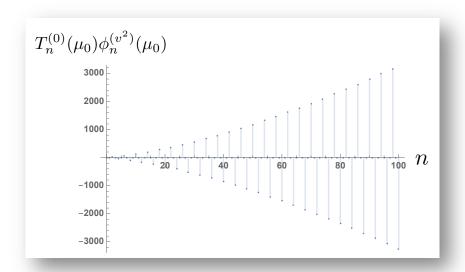
RG eq of LCDA (called ERBL eq) was also known since 1980's LCDA is expanded using eigenfunc. and each coeff. is evolved from m_Q to Q.

$$\phi_n(\mu) = \sum_{k=0}^n U_{nk}(\mu, \mu_0) \phi_k(\mu_0)$$

$$\phi_n(\mu_0) = N_n \int_0^1 dx \, \phi_P(x, \mu_0) C_n^{(3/2)}(2x - 1)$$

$$\phi_n(\mu) \Big|^{\text{LL}} = \phi_n(\mu_0) \left[\frac{\alpha_s(\mu)}{\alpha_s(\mu_0)} \right]^{\frac{\gamma_n^{(0)} - \gamma_0^{(0)}}{2\beta_0}}$$

alternating between large +/- values makes the sum NON-convergent!



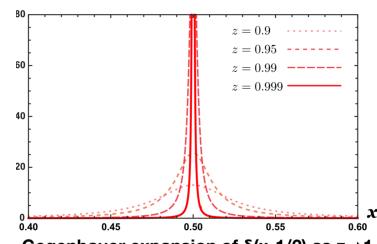
What's the problem?

for light meson, a smooth model function was taken and the sum is convergent. for heavy quarkonium, singular LCDAs due to refactorization.

$$\phi^{(0)} = \delta(x - \frac{1}{2})$$
 $\phi^{(v^2)} = \frac{\delta^{(2)}(x - \frac{1}{2})}{24},$

Abel-Pade method

- Smearing the LCDAwith new variable z<1
- Abel summation



Gegenbauer expansion of $\delta(x-1/2)$ as $z \rightarrow 1$

z = 0.80	z = 0.90	z = 0.95	z = 0.99	Pade
4.49305	4.24087	4.11884	4.02350	4.00000
1.28864	1.31426	1.33389	1.33386	1.33333

Use the Pade approximation to boost the convergence.

$$f(z) = \frac{P_m(z)}{Q_n(z)} + \mathcal{O}(z^{m+n+1}) \qquad P_m(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_m z^m$$

γ_5 -scheme dependence

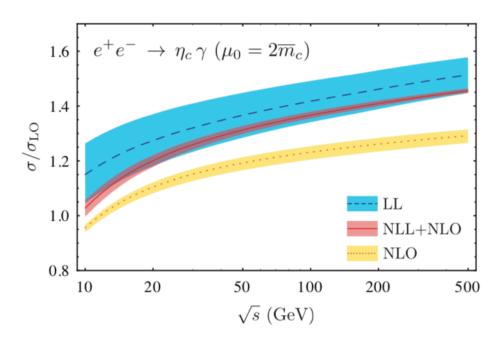
- Pseudoscalar LCDA: $\langle P(p)|\bar{Q}(z)\gamma^{+}\gamma_{5}[z,0]Q(0)|0\rangle = p^{+}f_{P}\int_{0}^{1}dx\,e^{ip\cdot zx}\phi_{P}(x,\mu)dx$
 - γ_5 in Dim reg is scheme dependent $\{\gamma_5, \gamma^{\mu}\} = 0$ in 4 dim (NDR) or in d dim (HV)

$$\phi^{(1)} = C_F \theta(1 - 2x) \left\{ \left[4x \frac{\frac{1}{2} + \bar{x}}{\frac{1}{2} - x} \left(\log \frac{\mu_0^2}{4m_Q^2} - 2\log(\frac{1}{2} - x) - 1 \right) \right]_+ + \left[\frac{4x\bar{x}}{(\frac{1}{2} - x)^2} \right]_{++} + \Delta \left[16x \right]_+ \right\}$$

 Δ =0 for NDR, Δ =1 for HV

- \square Checking cancellation of Δ dependence is a strong constraint and nontrivial way validating our resummation.
 - \triangle term in LCDA cancels against one-loop T_H and two-loop anomalous dim. in U_{nk} .
 - cancellations valid up to NLL accuracy

Log resummation effect



- Uncertainty estimated by typical scale variations
- LL and NLL are consistent and look perturbatively convergent
- ☐ fixed-order NLO w/o resummation is largely deviated from LL,NLL
 - underestimates its uncertainty

Numerical results

At B-, Z-boson, Higgs factories

	Cross section		Branching fraction		
\sqrt{s}	η_c	η_b	η_c	η_b	
10.58 GeV	$32.7 \pm 2.8 \text{ fb}$	-			
m_Z	$0.449 \pm 0.037 \text{ fb}$	$1.66\pm0.31~\mathrm{fb}$	$(7.42 \pm 0.61) \times 10^{-9}$	$(2.80 \pm 0.53) \times 10^{-8}$	
240 GeV	$0.189 \pm 0.016 \text{ ab}$	0.0934 ± 0.0176 ab			

input parameters:

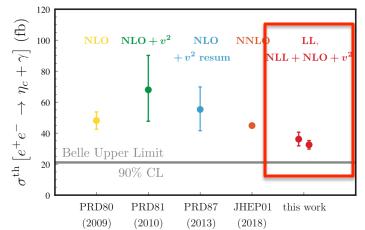
$$\overline{m}_c = 1.275^{+0.025}_{-0.035} \text{ GeV}$$

$$\Gamma[\eta_c \to \gamma \gamma] = 5.0 \pm 0.4 \text{ keV}$$

$$\langle \mathcal{O}_1 \rangle_{\eta_c} = 0.302^{+0.052}_{-0.049} \text{ GeV}^3$$

$$\langle v^2 \rangle_{\eta_c} = 0.222^{+0.070}_{-0.070}.$$

Various prediction and Belle's upper bound

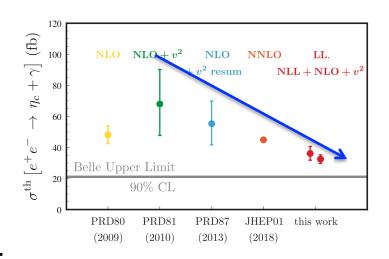


- our results are consistent with other predictions since resum. effect is not large at Belle energy
- lower central value due to smaller decay rate
- our prediction is 4-sigma away from

 Belle's upper limit (20.1 fb) PRD98 (2018) 0922015

Summary

- Exclusive quarkonium is motivated by experiments, BESIII, Belle, LHC at wide ranges of energies 3-100 GeV
- $\hfill \square$ Predictions for $\eta_c + \gamma$ valid at these energies by NRQCD and LC factorization
 - ☐ log resummation at NLL
 - \Box v² corrections
 - power corrections of r at NLO
- ☐ At Belle energy, consistent with previous predictions but deviated from Belle's upper limit by 4 sigma level.



It looks like that it's moving towards a right direction with time.

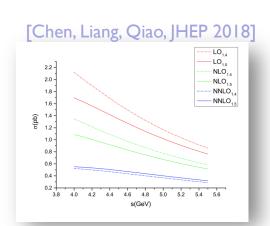
Thanks!

Results at BESIII energy (4 GeV)

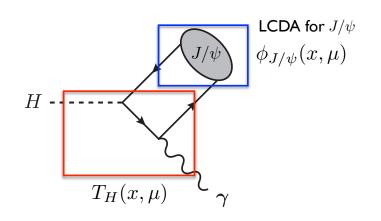
☐ BESIII's peak cross section via Y(4260) resonance

$$2.11 \pm 0.49 (\text{stat.}) \pm 0.36 (\text{syst.}) \text{ pb}$$

- ☐ Off-resonance cross section must be smaller than the value
- Our numerical value: 0.53 pb
- A simple extrapolation from our prediction at BELLE energy by using scaling $1/Q^2$: 7x (32.7 fb) =0.23 pb
- comparable withNNLO prediction ~0.5 pb



Comparison with inclusive process



fragmentation function for parton
$$i$$
 to η_c
$$D_{i\to\eta_c}(z,\mu)$$

$$d\hat{\sigma}_{gg\to i}(p/z,\mu)$$
 Braaten and Yuan, PRL, 1993

exclusive production process

inclusive production (fragmenting) process

x: longitudinal momentum fraction of quark in J/ψ

$$\mathcal{M}_{H\to J/\psi+\gamma} = \int_0^1 dx \, T_H(x,\mu) \phi_{J/\psi}(x,\mu)$$

z: longitudinal momentum fraction of η_c to fragmenting parton i

$$d\sigma_{\eta_c}(p) = \sum_i \int_0^1 dz \, d\hat{\sigma}_i(p/z, \mu) D_{i \to \eta_c}(z, \mu)$$
 (sum over parton i)

scale evolution: ERBL equation

$$\mu^2 \frac{\partial}{\partial \mu^2} \phi(x, \mu) = \int_0^1 dy \, \underline{V\left[x, y; \alpha_s(\mu)\right]} \, \phi(y, \mu)$$
Evolution kernel

scale evolution: DGLAP equation

$$\mu \frac{\partial}{\partial \mu} D_{i \to \mathcal{O}}(z, \mu) \; = \; \sum_{j} \int_{z}^{1} \frac{dy}{y} \; \underbrace{P_{i \to j}(z/y, \mu)}_{\text{DGLAP splitting function}} D_{j \to \mathcal{O}}(y, \mu)$$

