Pentaquarks from hidden－strange to hidden－bottom systems

Hongxia Huang（黄虹霞） Nanjing Normal University

$6^{\text {th }}$ workshop on the XYZ particles
Fudan University，2020．1．11－2020．1．13

Outline

I. Introduction
II. Quark model and calculation methods
III. Hidden-charm pentaquarks
IV. Hidden-bottom pentaquarks
V. Hidden-strange pentaquarks
VI. Summary

I. Introduction

- Experimental results

- 2015 LHCb Collaboration, Phys. Rev. Lett. 115, 072001

- The two P_{c}^{+}states are found to have masses and widths of

$$
\begin{aligned}
& M_{P_{c}(4380)}=4380 \pm 8 \pm 29 \mathrm{MeV} \\
& \Gamma_{P_{c}(4380)}=205 \pm 18 \pm 86 \mathrm{MeV} \\
& M_{P_{c}(4450)}=4449.8 \pm 1.7 \pm 2.5 \mathrm{MeV} \\
& \Gamma_{P_{c}(4450)}=39 \pm 5 \pm 19 \mathrm{MeV}
\end{aligned}
$$

- The preferred spin-parity J^{P} are of opposite values, with one state having spin $3 / 2$ and the other $5 / 2$.
- 2019 LHCb Collaboration, Phys. Rev. Lett. 122222001

Figure 6: Fit to the $\cos \theta_{P_{C}}$-weighted $m_{J / \psi_{p}}$ distribution with three BW amplitudes and a sixth-order polynomial background. This fit is used to determine the central values of the masses superimposed.

- The Pc(4312) was discovered with 7.3σ significance by analyzing the $J / \psi p$ invariant mass spectrum.
- The previously reported $\operatorname{Pc}(4450)$ structure was resolved at 5.4σ significance into two narrow states: the $P c(4440)$ and $P c(4457)$.

Table 1: Summary of P_{c}^{+}properties. The central values are based on the fit displayed in Fig. 6.

State	$M[\mathrm{MeV}]$	$\Gamma[\mathrm{MeV}]$	$(95 \% \mathrm{CL})$	$\mathcal{R}[\%]$
$P_{c}(4312)^{+}$	$4311.9 \pm 0.7_{-0.6}^{+6.8}$	$9.8 \pm 2.7_{-4.5}^{+3.7}$	(<27)	$0.30 \pm 0.07_{-0.09}^{+0.34}$
$P_{c}(4440)^{+}$	$4440.3 \pm 1.3_{-4.7}^{+4.1}$	$20.6 \pm 4.9_{-10.1}^{+8.7}$	(<49)	$1.11 \pm 0.33_{-0.10}^{+0.22}$
$P_{c}(4457)^{+}$	$4457.3 \pm 0.6_{-1.7}^{+4.1}$	$6.4 \pm 2.0_{-1.9}^{+5.7}$	(<20)	$0.53 \pm 0.16_{-0.13}^{+0.15}$

> Theoretical studies

- After LHCb's Pc results (2015)

1) Loosely bound molecular baryon-meson pentaquark states:
M. Karliner and J. L. Rosner, Phys. Rev. Lett. 115, 122001 (2015).
R. Chen, X. Liu, X.-Q. Li, S.-L. Zhu, Phys.Rev.Lett. 115, no.13, 132002 (2015).
H. X. Chen, W. Chen, X. Liu, T.G. Steele and S. L. Zhu, Phys.Rev.Lett. 115, no.17, 172001 (2015) .
L. Roca, J. Nieves and E. Oset, Phys. Rev. D 92, 094003 (2015).
J. He, Phys.Lett. B753, 547-551 (2016) .
H. X. Huang, C. R. Deng, J. L. Ping, and F. Wang, Eur. Phys. J. C 76, 624 (2016).
H. X. Huang and J. L. Ping, Phys. Rev. D 99, 014010 (2019).
G. Yang and J. L. Ping, Phys. Rev. D 95, 010014 (2017).
A. Feijoo, V. K. Magas, A. Ramos and E. Oset, Phys. Rev. D 95, no.3, 039905 (2017). and others.

2) Tightly bound pentaquark states

L. Maiani, A.D. Polosa, and V. Riquer, Phys.Lett. B 749, 289-291 (2015).
R. F. Lebed, Phys.Lett. B 749, 454-457 (2015).
G.-N. Li, X.-G. He, M. He, JHEP 1512, 128 (2015).
Z.-G. Wang, Eur. Phys. J. C 76, no.2, 70 (2016).
R. Zhu and C. F. Qiao, Phys.Lett. B 756, 259 (2016).
V. V. Anisovich et al., arXiv:1507.07652.
R. Ghosh, A. Bhattacharya, and B. Chakrabarti, Phys. Part. Nucl. Lett. 14, 550 (2017).
and others.
3) Peaks due to triangle-diagram processes
F.-K. Guo, U.-G. Meißner, W. Wang, and Z. Yang, Phys. Rev. D 92, 071502(R) (2015).
U.-G. Meißner and J. A. Oller, Phys. Lett. B 751, 59 (2015).
X.-H. Liu, Q. Wang, and Q. Zhao, Phys. Lett. B 757, 231 (2016).
Q. Wang, X.-H. Liu, and Q. Zhao, Phys.Rev. D92, 034022 (2015).
M. Mikhasenko, arXiv:1507.06552.
and others.

- Immediately after LHCb's Pc results (2019)
R. Chen, X. Liu, Z.-F. Sun, and S.-L. Zhu, arXiv:1903.11013 [hep-ph].
F. K. Guo, H. J. Jing, U.-G. Meissner, and S. Sakai, arXiv:1903.11503 [hep-ph].
J. He, arXiv:1903.11872 [hep-ph].

Hua-Xing Chen, Wei Chen, Shi-Lin Zhu, arXiv: 1903.11001 [hep-ph].
H. X. Huang, J. He, and J. L. Ping, arXiv: 1904.00221 [hep-ph].
C. J. Xiao, Y. Huang, Y. B. Dong, L. S. Geng, and D. Y. Chen, arXiv:1904.00872 [hep-ph].
M. Z. Liu, Y. W. Pan, F. Z. Peng, M. S. Sanchez, L. S. Geng, A. Hosaka, and M. P.

Valderrama, , Phys. Rev. Lett. 122, 242001 (2019)
and others.

- Some early studies

J. J. Wu, R. Molina, E. Oset and B. S. Zou, Phys. Rev. Lett. 105, 232001 (2010) [arXiv:1007.0573 [nucl-th]].
J. J. Wu, R. Molina, E. Oset and B. S. Zou, Phys. Rev. C 84, 015202 (2011) [arXiv:1011.2399 [nucl-th]].
J. J. Wu, T.-S. H. Lee and B. S. Zou, Phys. Rev. C 85, 044002 (2012) [arXiv:1202.1036 [nucl-th]].
Z. C. Yang, Z. F. Sun, J. He, X. Liu and S. L. Zhu, Chin. Phys. C 36, 6 (2012)
[arXiv:1105.2901 [hep-ph]].
and others.

- The $N \phi$ bound state was first studied by H. Gao .

PRC 63 (2001) 022201(R)
The QCD van der Waals attractive potential is strong enough to bind a ϕ meson onto a nucleon inside a nucleus to form a bound state.

- The feasibility of experimental search for the $N \phi$ bound state at Jefferson Lab was demonstrated by H. Gao .

PRC 75 (2007) 058201

- Measurement of coherent ϕ-meson photoproduction from the deuteron.

CLAS Collaboration, PRC 76 (2007) 052202(R)
PLB 680 (2009) 417-422, PLB 696 (2011) 338-342

- The $\mathrm{N} \phi$ was a quasi-bound state in the extended chiral $\mathrm{SU}(3)$ quark model.

PRC 73 (2006) 025207

$>$ Our work

1) Hidden-charm pentaquark
2) Hidden-bottom pentaquark

Eur. Phys. J. C. 76, 624 (2016), arXiv: 1510.04648.
Phys. Rev. D. 99, 014010 (2019) , arXiv: 1811.04260.
3) Hidden-strange pentaquark

Phys. Rev. C. 95, 055202 (2017) , arXiv: 1701.03210.
Phys. Rev. D. 97, 094019 (2018) , arXiv: 1803.05267.

II. Quark model and calculation methods

> Quark delocalization color screening model (QDCSM)

- QDCSM was developed by Nanjing-Los Alamos collaboration in1990s aimed to multi-quark study. (PRL 69, 2901, 1992)
- Two new ingredients (based on quark cluster model configuration):
quark delocalization (orbital excitation)
color screening (color structure)
- Apply to the study of baryon-baryon interaction and dibaryons

```
deuteron, d*, NN, N\Lambda, N\Omega, ...
```

- Apply to the study of baryon-meson interaction and pentaquarks
NK, Npi, ...

$$
H=\sum_{i=1}^{5}\left(m_{i}+\frac{p_{i}^{2}}{2 m_{i}}\right)-T_{c}+\sum_{i<j}\left[V^{G}\left(r_{i j}\right)+V^{x}\left(r_{i j}\right)+V^{C}\left(r_{i j}\right)\right]
$$

$$
V^{G}\left(r_{i j}\right)=\frac{1}{4} \alpha_{s} \lambda_{i} \cdot \lambda_{j}\left[\frac{1}{r_{i j}}-\frac{\pi}{2}\left(\frac{1}{m_{i}^{2}}+\frac{1}{m_{j}^{2}}+\frac{4 \sigma_{i} \cdot \sigma_{j}}{3 m_{i} m_{j}}\right) \delta\left(r_{i j}\right)-\frac{3}{4 m_{i} m_{j} r_{i j}^{r_{i j}}} S_{i j}\right],
$$

$$
V^{\chi}\left(r_{i j}\right)=\frac{1}{3} \alpha_{c h} \frac{\Lambda^{2}}{\Lambda^{2}-m_{\chi}^{2}} m_{\chi}\left\{\left[Y\left(m_{\chi} r_{i j}\right)-\frac{\Lambda^{3}}{m_{\chi}^{3}} Y\left(\Lambda r_{i j}\right)\right] \sigma_{i} \cdot \sigma_{j}+\left[H\left(m_{\chi} r_{i j}\right)-\frac{\Lambda^{3}}{m_{\chi}^{3}} H\left(\Lambda r_{i j}\right)\right] S_{i j}\right\} \mathbf{F}_{i} \cdot \mathbf{F}_{j}, \quad \chi=\pi, K, \eta,
$$

$$
V^{C}\left(r_{i j}\right)=-a_{c} \lambda_{i} \cdot \lambda_{j}\left[f\left(r_{i j}\right)+V_{0}\right],
$$

$$
f\left(r_{i j}\right)= \begin{cases}r_{i j}^{2} & \text { if } i, \text { joccur in the same baryon orbit, } \\ \frac{1-e^{-\mu_{j} i_{i j}^{2}}}{\mu_{i j}} & \text { if } i, \text { joccur in different baryon orbits }\end{cases}
$$

$$
\begin{equation*}
S_{i j}=\frac{\left(\sigma_{i} \cdot \mathbf{r}_{i j}\right)\left(\sigma_{j} \cdot \mathbf{r}_{i j}\right)}{r_{i j}^{2}}-\frac{1}{3} \sigma_{i} \cdot \sigma_{j}, \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
\psi_{\alpha}\left(s_{i}, \epsilon\right) & =\left(\phi_{\alpha}\left(s_{i}\right)+\epsilon \phi_{\alpha}\left(-s_{i}\right)\right) / N(\epsilon), \\
\psi_{\beta}\left(-s_{i}, \epsilon\right) & =\left(\phi_{\beta}\left(-s_{i}\right)+\epsilon \phi_{\beta}\left(s_{i}\right)\right) / N(\epsilon),
\end{aligned}
$$

$$
\begin{aligned}
N(\epsilon) & =\sqrt{1+\epsilon^{2}+2 \epsilon e^{-s_{i}^{2} / 4 b^{2}}} \\
\phi_{\alpha}\left(s_{i}\right) & =\left(\frac{1}{\pi b^{2}}\right)^{3 / 4} e^{-\frac{1}{2 b^{2}}\left(r_{\alpha}-\frac{2}{5} s_{i} / 2\right)^{2}} \\
\phi_{\beta}\left(-s_{i}\right) & =\left(\frac{1}{\pi b^{2}}\right)^{3 / 4} e^{-\frac{1}{2 b^{2}}\left(r_{\beta}+\frac{3}{5} s_{i} / 2\right)^{2}}
\end{aligned}
$$

$>$ Calculation methods

(1) Resonating group method (RGM)

In RGM, the multi-quark wave function is approximated by the cluster wave function,

$$
\psi\left(\xi_{1}, \xi_{2}, \boldsymbol{R}\right)=\mathcal{A}\left[\phi\left(\xi_{1}\right) \phi\left(\xi_{2}\right) \chi(\boldsymbol{R})\right]
$$

The internal motions of clusters are frozen and the relative motion wave function satisfies the following RGM equation

$$
\int H\left(R^{\prime \prime}, R^{\prime}\right) \chi\left(R^{\prime}\right) d R^{\prime}=E \int N\left(R^{\prime \prime}, R^{\prime}\right) \chi\left(R^{\prime}\right) d R^{\prime}
$$

$$
\left\{\begin{array}{c}
H\left(R^{\prime \prime}, R^{\prime}\right) \\
N\left(R^{\prime \prime}, R^{\prime}\right)
\end{array}\right\}=\left\langle A\left[\phi_{1} \phi_{2} \delta\left(R-R^{\prime \prime}\right)\right]\right|\left\{\begin{array}{c}
H \\
1
\end{array}\right\}\left|A\left[\phi_{1} \phi_{2} \delta\left(R-R^{\prime}\right)\right]\right\rangle
$$

RGM equation

$$
\int L\left(R^{\prime \prime}, R^{\prime}\right) \chi\left(R^{\prime}\right) d R^{\prime}=0
$$

where

$$
L\left(R^{\prime \prime}, R^{\prime}\right)=H\left(R^{\prime \prime}, R^{\prime}\right)-E N\left(R^{\prime \prime}, R^{\prime}\right)
$$

$$
=\left[-\frac{\nabla_{R^{\prime \prime}}^{2}}{2 \mu}+V_{r e l}^{D}\left(R^{\prime}\right)-E_{r e l}\right] \delta\left(R^{\prime \prime}-R^{\prime}\right)+H^{E X}\left(R^{\prime \prime}, R^{\prime}\right)-E N^{E X}\left(R^{\prime \prime}, R^{\prime}\right)
$$

(2) Generating coordinates method (GCM)

Extending the relative motion wave function to the Gaussian function:

$$
\chi(\vec{R})=\sum_{i} C_{i} \chi_{i}(\vec{R})=\left(\frac{3}{2 \pi b^{2}}\right)^{3 / 4} \sum_{i} C_{i} e^{-\frac{3}{4}\left(\vec{R}-\xi_{i}\right)^{2} / b^{2}}
$$

$$
\phi_{C}\left(\overrightarrow{R_{C}}\right)=\left(\frac{6}{\pi b^{2}}\right)^{\frac{3}{4}} e^{-\frac{3}{b^{2}}\left(\overrightarrow{R_{c}}\right)^{2}}
$$

$$
\begin{aligned}
\Psi_{6 q}= & A \sum_{i} C_{i} \prod_{\alpha=1}^{3} \phi_{\alpha}\left(\vec{S}_{i}\right) \prod_{\beta=4}^{6} \phi_{\beta}\left(-\vec{S}_{i}\right) \\
& {\left[\eta_{I_{1} S_{1}}\left(B_{1}\right) \eta_{I_{2} S_{2}}\left(B_{2}\right)\right]^{I S}\left[\chi_{c}\left(B_{1}\right) \chi_{c}\left(B_{2}\right)\right]^{[\sigma]} }
\end{aligned}
$$

$$
\begin{aligned}
\Psi_{6 q}= & A \sum_{k} \sum_{i, L_{k}} C_{k, i, L_{k}} \int \frac{d \Omega_{S_{i}}}{\sqrt{4 \pi}} \prod_{\alpha=1}^{3} \psi_{\alpha}\left(\vec{S}_{i}, \epsilon\right) \prod_{\beta=4}^{6} \psi_{\beta}\left(-\vec{S}_{i}, \epsilon\right) \\
& {\left[\left[\eta_{I_{1 k} S_{1 k}}\left(B_{1 k}\right) \eta_{I_{2 k} S_{2 k}}\left(B_{2 k}\right)\right]^{I S_{k}} Y^{L_{k}}\left(\hat{\vec{S}}_{i}\right)\right]^{J}\left[\chi_{C}\left(B_{1}\right) \chi_{c}\left(B_{2}\right)\right]^{[\sigma]} }
\end{aligned}
$$

$$
\begin{gathered}
\int H\left(\vec{R}, \vec{R}^{\prime}\right) \chi\left(\vec{R}^{\prime}\right) d \vec{R}^{\prime}=E \int N\left(\vec{R}, \overrightarrow{R^{\prime}}\right) \chi\left(\vec{R}^{\prime}\right) d \vec{R}^{\prime} \\
\sum_{j, k, L_{k}} C_{j, k, L_{k}} H_{i, j}^{k^{\prime}, L_{k}^{\prime}, k, L_{k}}=E \sum_{j, k, L_{k}} C_{j, k, L_{k}} N_{i, j}^{k^{\prime}, L_{k}^{\prime}, k, L_{k}} \delta_{L_{k}^{\prime}, L_{k}}
\end{gathered}
$$

(2) Kohn-Hulthen-Kato(KHK) variational method

$$
\begin{aligned}
& u_{t}(R)=\sum_{i=0}^{n} c_{i} u_{i}(R) \\
& u_{i}(R)= \begin{cases}\alpha_{i} u_{i}^{(i n)}(R), & R<R_{c}, \\
\left(h_{L}^{(-)}(k, R)+s_{i} h_{L}^{(+)}(k, R)\right) R, & R>R_{c}\end{cases}
\end{aligned}
$$

$$
\frac{u_{i}^{(i n)}(R)}{R}=\sqrt{4 \pi}\left(\frac{3}{2 \pi b^{2}}\right)^{\frac{3}{4}} e^{-\frac{3}{4 b^{2}}\left(R^{2}+r_{i}^{2}\right)} i^{L} j_{L}\left(-i \frac{3}{2 b^{2}} R r_{i}\right)
$$

$$
\sum_{i=1}^{n} a_{i=1},
$$

$$
\sum_{i=0}^{n}, s_{i}=S_{t}
$$

$$
c_{0}=1-\sum_{i=1}^{n} c_{i} \Longrightarrow u_{t}(R)=u_{0}(R)+\sum_{i=1}^{n} c_{i}\left(u_{i}(R)-u_{0}(R)\right)
$$

$$
\begin{gathered}
\left\langle\delta \Psi^{\prime}\right| H-E|\Psi\rangle=0 \\
\sum_{j=1}^{n} \mathcal{L}_{i j} c_{j}=\mathcal{M}_{i},(i=1 \sim n) \\
\mathcal{L}_{i j}=\mathcal{K}_{i j}-\mathcal{K}_{i 0}-\mathcal{K}_{0 j}+\mathcal{K}_{00} \\
\mathcal{M}_{i}=\mathcal{K}_{00}-\mathcal{K}_{i 0}
\end{gathered}
$$

$\mathcal{K}_{i j}=\left\langle\phi_{A}\left(\xi_{A}\right) \phi_{B}\left(\xi_{B}\right) u_{i}(R) / R \cdot Y_{L M}(\hat{R})\right| H-E\left|\mathcal{A}\left[\phi_{A}\left(\xi_{A}\right) \phi_{B}\left(\xi_{B}\right) u_{j}(R) / R \cdot Y_{L M}(\hat{R})\right]\right\rangle$

Some examples

1). d* mass and width in NN scattering

PRC 79 (2009) 024001

$N_{c h}$	ChQM2		ChQM2a		QDCSM0		QDCSM1		QDCSM3	
	M	Γ								
1c	2425	-	2430	-	2413	-	2365	-	2276	-
2 cc	2428	17	2433	10	2416	20	2368	20	2278	19
4 cc	2413	14	2424	9	2400	14	2357	14	2273	17
10cc	2393	14			-	-	-	-	-	-
$10 \mathrm{cc}^{\prime}$	2353	17			-	-	-	-	-	-
$10 \mathrm{cc}{ }^{\prime \prime}$	2351	21			-	-	-	-	-	-

$m=2.37 \mathrm{GeV}, \Gamma \approx 70 \mathrm{MeV}$ and $I\left(J^{P}\right)=0\left(3^{+}\right)$
2). Δ mass and width in Npi scattering

$$
\mathrm{MO}=1525 \mathrm{MeV} \longrightarrow \quad M=1232 \mathrm{MeV}, \Gamma \sim 90 \mathrm{MeV}
$$

\checkmark The mass of the resonance state will shift by coupling to the open channel. It is better to study the resonances in the scattering process rather than in the limited space.
\checkmark Extending the work to the other pentaquark systems is feasible.

III. Hidden-charm pentaquarks

- The hidden charm pentaquark channels with I=1/2

Table 3 The channels involved in the calculation

$S=\frac{1}{2}$	$N \eta_{c}$	$N J / \psi$	$\Lambda_{c} D$	$\Lambda_{c} D^{*}$	$\Sigma_{c} D$
	$\Sigma_{c} D^{*}$	$\Sigma_{c}^{*} D^{*}$			
$S=\frac{3}{2}$	$N J / \psi$	$\Lambda_{c} D^{*}$	$\Sigma_{c} D^{*}$	$\Sigma_{c}^{*} D$	$\Sigma_{c}^{*} D^{*}$
$S=\frac{5}{2}$	$\Sigma_{c}^{*} D^{*}$				

\checkmark The state with the positive parity is unbound in present calculations.

- The effective potentials

Fig. 1 The potentials of different channels for the $I J^{P}=\frac{1}{2}^{\frac{1}{2}}-$ system

Fig. 2 The potentials of different channels for the $I J^{P}=\frac{1}{2} \frac{3^{-}}{}{ }^{-}$system

Fig. 3 The potential of a single channel for the $I J^{P}=\frac{1}{2}^{\frac{5}{2}}$ - system
\checkmark The potentials are repulsive between Λc and D / D^{*}. So no bound states or resonances can be formed in these two channels $\Lambda c D$ and $1 c D^{*}$.
Strong attractions between $\Sigma c / \Sigma c^{*}$ and D / D^{*}.
\checkmark It is possible for $\Sigma c / \Sigma c^{*}$ and D/ D* to form bound states or resonance states.

- The single channel calculation

$J^{p}=\frac{1}{2}^{-}$				$J^{p}=\frac{3}{2}^{-}$			
$\mu_{c c}$	0.01	0.001	0.0001	$\mu_{c C}$	0.01	0.001	0.0001
$N \eta_{c}$	ub	ub	ub	$N J / \psi$	ub	ub	ub
NJ/ ψ	ub	ub	ub	${ }^{5} \mathrm{C}^{-D^{*}}$	ub	ub	ub
$\Lambda_{c} D$	ub	ub	ub	$\Sigma_{C} D^{*}$	-16/4446	-11/4451	-10/4452
$\Lambda_{c} D^{*}$	ub	ub	ub	$\Sigma_{r}^{*} D$	-17/4367	-14/4370	-12/4372
$\Sigma_{C} D$	-19/4300	$-15 / 4304$	$-13 / 4306$	$\Sigma^{*} D^{*}$	$-17 / 4510$	-15/4512	$-13 / 4514$
$\Sigma_{c} D^{*}$	$-21 / 4441$	$-19 / 4443$	$-18 / 4444$	$J^{p}=\frac{5}{2}$			
$\Sigma_{c}^{*} D^{*}$	-24/4503	-23/4504	-21/4506	$\Sigma^{*} D^{*}$	$-15 / 4512$	-10/4517	$-10 / 4517$

Comparing with the LHCb's result in 2015
The main component of the $\operatorname{Pc}(4380)$ maybe $\Sigma c^{*} \mathrm{D}$ with $J^{P}=3 / 2^{-}$.
\checkmark The mass of the $\Sigma c D^{*}$ with $J^{P}=3 / 2^{-}$is close to the reported $\operatorname{Pc}(4450)$, but the opposite parity of this state to $\operatorname{Pc}(4380)$ may prevent one from making this assignment at that time.

- The channel-coupling calculation

Table 6 The masses (in MeV) of the hidden-charm molecular pentaquarks with all channels coupling and the percentages of each channel in the eigen-states

$J^{p}=\frac{1}{7}^{-}$				$J^{P}=\frac{3}{7}^{-}$				$J^{P}=\frac{5}{7}^{-}$			
$\mu_{c c}$	0.01	900	00001	$\mu_{c c}$	0.01	0.001	00001	$\mu_{C C}$	0.01	00	00001
$M_{\text {cc }}$	3881	3883	3884	$M_{c c}$	3997	3998	3998	$M_{c c}$	4512	4517	4517
$N \eta_{c}$	41.7	49.7	35.2	$N J / \psi$	80.8	71.0	62.1	$\Sigma_{C}^{*} D^{*}$	100.0	100.0	100.0
$\overline{N J /} \psi$	23.1	24.4	29.3	$\Lambda_{c} D^{*}$	8.7	11.9	15.9				
$\Lambda_{c} D$	14.6	11.7	14.5	$\Sigma_{c} D^{*}$	1.2	1.9	2.6				
$\Lambda_{c} D^{*}$	0.9	0.4	2.0	$\Sigma_{c}^{*} D$	3.5	5.8	7.3				
$\Sigma_{c} D$	0.1	4.8	6.0	$\Sigma_{c}^{*} D^{*}$	5.8	9.4	12.1				
$\Sigma_{c} D^{*}$	4.5	6.4	12.4								
$\Sigma_{c}^{*} D^{*}$	15.1	2.6	0.6								

\checkmark A bound state: $J^{P}=1 / 2^{-} \mathrm{Nnc}$
$\checkmark J^{P}=3 / 2^{-} \mathrm{NJ} / \psi$ (decayto open channels: D-wave $N \eta c$)
$\checkmark J^{P}=5 / 2^{-} \Sigma c^{*} D^{*}$ (decay to open channels: some D-wave channels)
\checkmark Where are these states?

$$
\begin{aligned}
& J^{P}=1 / 2^{-} \Sigma c \mathrm{D}, \Sigma \mathrm{CD} D^{*}, \Sigma \mathrm{c}^{*} \mathrm{D}^{*} \quad \text { (decay to open channels: } \mathrm{S} \text {-wave } \mathrm{N} \eta \mathrm{c}, \mathrm{NJ} / \psi, \Lambda c \mathrm{D} \text {, } \\
& \text { ^cD* and some D-wave channels) } \\
& J^{P}=3 / 2^{-} \sum \mathrm{C} * \mathrm{D}, \Sigma \mathrm{CD} *, \sum \mathrm{C}^{*} \mathrm{D}^{*} \quad \text { (decay to open channels: } S \text {-wave } \mathrm{NJ} / \psi, \Lambda c \mathrm{D} * \text { and } \\
& \text { some D-wave channels) }
\end{aligned}
$$

They maybe the resonance states.
To check whether they are resonance states or not, the study of scattering process of the corresponding open channels are needed!

- Resonance states in the scattering process

$$
\text { 1. } J^{P}=1 / 2^{-}
$$

FIG. 2. The $N \eta_{c}, N J / \psi, \Lambda_{c} D$, and $\Lambda_{c} D^{*} S$-wave phase shifts with four-channel coupling for the $I J^{P}=\frac{11}{2} \frac{1}{2}$ system.

- There are three resonance states: $\Sigma c \mathrm{D}, \Sigma \mathrm{c} \mathrm{D}^{*}$, and $\Sigma \mathrm{c}^{*} \mathrm{D}^{*}$ in the N $\eta \mathrm{c}$ scattering phase shifts.
- In other scattering channels there are only two resonance states: $\Sigma c D$ and ᄃcD*.
- There is only a cusp around the threshold of the third state $\sum c^{*} D^{*}$, because the channel coupling pushes the higher state above the threshold.

TABLE II. The masses and decay widths (in MeV) of the $I J^{P}=\frac{11}{2} \frac{1}{-}$ resonance states in the $N \eta_{c}, N J / \psi, \Lambda_{c} D$, and $\Lambda_{c} D^{*} S$-wave scattering process.

2. $J^{P}=3 / 2^{-}$

- There are two resonance states: $\Sigma c^{*} *$ and $\Sigma c^{*} D$ in
the $N J / \psi$ scattering phase states: $\Sigma c D^{*}$ and $\Sigma c^{*} D$ in
the $N J / \psi$ scattering phase shifts.
- There are three resonance states: $\Sigma \mathrm{cD}^{*}, \Sigma \mathrm{c}^{*} \mathrm{D}$ and $\Sigma c^{*} D^{*}$ in the $\Lambda c D^{*}$ scattering phase shifts.

FIG. 4. The $N J / \psi$ and $\Lambda_{c} D^{*} S$-wave phase shifts with fourchannel coupling for the $I J^{P}=\frac{13-}{2}-$ system.

TABLE III. The masses and decay widths (in MeV) of the $I J^{P}=\frac{1}{2} \frac{3-}{2}$ resonance states in the $N J / \psi$ and $\Lambda_{c} D^{*} S$-wave scattering process.

	Two-channel coupling					
	$\Sigma_{c} D^{*}$		$\Sigma_{c}^{*} D$		$\Sigma_{c}^{*} D^{*}$	
	M^{\prime}	Γ_{i}	M^{\prime}	Γ_{i}	M^{\prime}	Γ_{i}
$N J / \psi$	4453.8	1.7	4379.7	4.5	4526.4	2.5
$\Lambda_{c} D^{*}$	4452.7	0.8	4377.6	3.2	4522.7	1.8
$\underline{\Gamma_{\text {total }}}$		2.5		7.7		4.3
	Four-channel coupling					
	$\Sigma_{c} D^{*}$		$\Sigma_{c}^{*} D$		$\Sigma_{c}^{*} D^{*}$	
	M^{\prime}	Γ_{i}	M^{\prime}	Γ_{i}	M^{\prime}	Γ_{i}
$\begin{aligned} & \overline{N J / \psi} \\ & \Lambda_{c} D^{*} \end{aligned}$	4445.7 4	$\begin{aligned} & 1.5 \\ & 0.3 \end{aligned}$	4376.4 4374.4	1.5 0.9	nr 4523.0	1.0
$\underline{\underline{\Gamma_{\text {total }}}}$	/	1.8	1			1.0

- Compare with the experiment

LHCb Collaboration, Phys. Rev. Lett. 122222001 (2019)

Phys. Rev. D. 99, 014010 (2019), arXiv: 1904.00221

IV. Hidden-bottom pentaquarks

1. $\boldsymbol{J}^{P}=1 / 2^{-}$

FIG. 6. The $N \eta_{b}, N \Upsilon, \Lambda_{b} B$ and $\Lambda_{b} B^{*} S$-wave phase shifts with four-channel coupling for the $I J^{P}=\frac{1}{2} \frac{1}{2}-$ system.

TABLE IV. The masses and decay widths (in MeV) of the $I J^{P}=\frac{1}{2} \frac{1}{2}^{-}$resonance states in the $N \eta_{b}, N \Upsilon, \Lambda_{b} B$, and $\Lambda_{b} B^{*} S$-wave scattering process.

	Two-channel coupling						Four-channel coupling					
	$\Sigma_{b} B$		$\Sigma_{b} B^{*}$		$\Sigma_{b}^{*} B^{*}$		$\Sigma_{b} B$		$\Sigma_{b} B^{*}$		$\Sigma_{b}^{*} B^{*}$	
	M^{\prime}	Γ_{i}	M^{\prime}	Γ_{i}	M^{\prime}	Γ_{i}	M	Γ_{i}		Γ_{i}		Γ_{i}
$N \eta_{b}$	11083.3	4.0	11123.9	1.4	11154.5	4.7	1079.8	1.2	11120.6	0.4	11156.9	2.0
$N \Upsilon$	11080.4	1.4	11135.4	6.6	11146.2	2.0	11077.5	0.1	11125.8	0.8	11153.5	3.0
$\Lambda_{b} B$	11079.0	0.0003	11125.4	2.0	11145.1	0.49	11077.2	0.001	11122.0	0.6	11141.8	0.1
$\Lambda_{b} B^{*}$	11082.2	2.6	11126.2	2.3	11142.7	0.22	(1078.3	0.3	11123.0	1.2	11141.5	0.4
$\Gamma_{\text {total }}$		7.0		12.3		7.4		1.6		3.0		5.5

2. $\boldsymbol{J}^{P}=3 / 2^{-}$

FIG. 8. The $N \Upsilon$ and $\Lambda_{b} B^{*} S$-wave phase shifts with fourchannel coupling for the $I J^{P}=\frac{13}{2}{ }^{-}$system.

TABLE V. The masses and decay widths (in MeV) of the $I J^{P}=$ $\frac{1}{2} \frac{3}{2}-$ resonance states in the $N \Upsilon$ and $\Lambda_{b} B^{*} S$-wave scattering process.

	Two-channel coupling					
	$\Sigma_{b} B^{*}$		$\Sigma_{b}^{*} B$		$\sum_{b}^{*} B^{*}$	
	M^{\prime}	Γ_{i}	M^{\prime}	Γ_{i}	M^{\prime}	Γ_{i}
$N \Upsilon$	11126.3	1.7	11105.8	4.4	11155.7	3.8
$\Lambda_{b} B^{*}$	11125.5	0.9	11103.5	2.6	11152.0	2.7
$\Gamma_{\text {total }}$		2.6		7.0		6.5
	Four-channel coupling					
	$\Sigma_{b} B^{*}$		$\Sigma_{b}^{*} B$		$\Sigma_{b}^{*} B^{*}$	
	M^{\prime}	Γ_{i}	M^{\prime}	Γ_{i}	M^{\prime}	Γ_{i}
$\begin{aligned} & N \Upsilon \\ & \Lambda_{b} B^{*} \\ & \Gamma_{\text {total }} \\ & \hline \end{aligned}$	11122.7 11122.2		11103.6 11102.4		$\begin{array}{\|c} \mathrm{nr} \\ \hline 11150.0 \\ \hline \end{array}$	1.8
		0.4		1.1		1.8

\checkmark The results are similar to the hidden-charm pentaquarks.
\checkmark Some narrow hidden-bottom pentaquark resonances above 11 GeV are found from corresponding scattering process.

V. Hidden-strange pentaquarks

- The hidden strange pentaquark channels

TABLE II. The coupling channels of each quantum number.

J^{P}	${ }^{2 S+1} L_{J}$	Channels
$\frac{1}{2}^{-}$	${ }^{2} S_{\frac{1}{2}}$	$N \eta^{\prime}, N \phi, \Lambda K, \Lambda K^{*}, \Sigma K, \Sigma K^{*}, \Sigma^{*} K^{*}$
	${ }^{4} D_{\frac{1}{2}}$	$N \phi, \Lambda K^{*}, \Sigma K^{*}, \Sigma^{*} K, \Sigma^{*} K^{*}$
$\frac{3}{2}^{-}$	${ }^{2} D_{\frac{3}{2}}$	$N \eta^{\prime}, N \phi, \Lambda K, \Lambda K^{*}, \Sigma K, \Sigma K^{*}, \Sigma^{*} K^{*}$
	$\left.{ }^{4} S_{\frac{3}{2}}{ }^{4} D_{\frac{3}{2}}\right)$	$N \phi, \Lambda K^{*}, \Sigma K^{*}, \Sigma^{*} K, \Sigma^{*} K^{*}$
$\frac{5}{2}^{-}$	${ }^{2} D_{\frac{5}{2}}$	$N \eta^{\prime}, N \phi, \Lambda K, \Lambda K^{*}, \Sigma K, \Sigma K^{*}, \Sigma^{*} K^{*}$
	${ }^{4} D_{\frac{5}{2}}$	$N \phi, \Lambda K^{*}, \Sigma K^{*}, \Sigma^{*} K, \Sigma^{*} K^{*}$
$\frac{1}{2}^{+}$	${ }^{2} P_{\frac{1}{2}}$	$N \eta^{\prime}, N \phi, \Lambda K, \Lambda K^{*}, \Sigma K, \Sigma K^{*}, \Sigma^{*} K^{*}$
	${ }^{4} P_{\frac{1}{2}}$	$N \phi, \Lambda K^{*}, \Sigma K^{*}, \Sigma^{*} K, \Sigma^{*} K^{*}$
$\frac{3}{2}^{+}$	${ }^{2} P_{\frac{3}{2}}$	$N \eta^{\prime}, N \phi, \Lambda K, \Lambda K^{*}, \Sigma K, \Sigma K^{*}, \Sigma^{*} K^{*}$
	${ }^{4} P_{\frac{3}{2}}$	$N \phi, \Lambda K^{*}, \Sigma K^{*}, \Sigma^{*} K, \Sigma^{*} K^{*}$
$\frac{5}{2}^{+}$	${ }^{4} P_{\frac{5}{2}}$	$N \phi, \Lambda K^{*}, \Sigma K^{*}, \Sigma^{*} K, \Sigma^{*} K^{*}$

\checkmark The states of P and D wave are unbound in present calculations.

- The effective potentials

FIG. 1: The potentials of different channels for the $I=\frac{1}{2}$, $J^{P}=\frac{1}{2}^{-}, \frac{3}{2}^{-}, \frac{5}{2}^{-}$systems.

- The bound state calculation

TABLE III. The binding energy and the total energy of each individual channel and all coupled channels for the two S-wave bound states with the quantum numbers $J^{P}=\frac{1}{2}^{-}$and $\frac{3}{2}^{-}$. The values are provided in units of MeV , and "ub" represents unbound.

Channel	$J^{P}=\frac{1}{2}^{-}$			$J^{P}=\frac{3}{2}^{-}$		
	QDCSM1	QDCSM2	QDCSM3	QDCSM1	QDCSM2	QDCSM3
$N \eta^{\prime}$	ub	ub	ub	-	-	-
$N \phi$	ub	ub	ub	ub	ub	ub
ΛK	ub	ub	ub	-	-	-
ΛK^{*}	ub	ub	ub	ub	ub	ub
ΣK	-6.7/1681.3	-26.8/1661.2	-4.9/1683.1	-	-	-
ΣK^{*}	-8.9/2076.1	-30.6/2054.4	-22.4/2062.2	-21.6/2063.4	-21.1/2063.9	-21.2/2063.8
$\Sigma^{*} K$	-	-	-	-10.4/1869.6	-15.5/1864.5	-11.1/1868.9
$\Sigma^{*} K^{*}$	-17.3/2259.7	-87.0/2190.0	-73.9/2203.1	-11.3/2265.7	-18.4/2258.6	-27.2/2249.8
Coupled	-16.0/1881.0	-20.0/1877.0	-24.3/1872.7	-10.1/1948.9	-7.7/1951.3	-1.6/1957.4

$\checkmark N n^{\prime}$ is a bound state by channel-coupling calculation.
$\mathrm{N} \phi$ may be a resonance state.

- Resonance states in the scattering process

1. $N \phi$

TABLE IV. The $N_{s \bar{s}}$ bound state mass calculated from the ${ }^{2} D_{\frac{3}{2}}$ scattering channels. The values are provided in units of MeV .

Scattering channel	QDCSM1	QDCSM2	QDCSM3
$N \eta^{\prime}$	1947.998	1949.485	1955.988
ΛK	1947.975	1949.480	1955.910
ΣK	-	1949.597	-

FIG. 1. The phase shifts of different scattering channels for the $J^{P}=\frac{3}{2}^{-}$systems

TABLE V. The decay widths and branch ratios of each decay channel of $N_{s \bar{s}}$ bound state.

Decay channel	QDCSM1		QDCSM2		QDCSM3	
	$\Gamma_{i}(\mathrm{MeV})$	$\Gamma_{i} / \Gamma(\%)$		$\Gamma_{i}(\mathrm{MeV})$	$\Gamma_{i} / \Gamma(\%)$	$\Gamma_{i}(\mathrm{MeV})$
$N \eta^{\prime}$	0.002	0.1	0.022	0.5	0.009	0.2
ΛK	0.011	0.3	0.120	2.9	0.055	1.2
ΣK	-	0.0	0.060	1.5	-	0.0
ϕ decays	3.619	99.6	3.892	95.1	4.616	98.6

2. Pc-like resonances

TABLE IV. The resonance mass and decay width (in MeV) of the molecular pentaquarks with $J^{P}=\frac{1}{2}$ -

	ΣK		ΣK^{*}		$\Sigma^{*} K^{*}$	
S wave	M_{r}	Γ_{i}	M_{r}	Γ_{i}	M_{r}	Γ_{i}
$N \eta^{\prime}$	\cdots	\cdots	2079.4	1.1	2246.8	20.0
$N \phi$	\cdots	\cdots	2080.0	3.6	2237.0	30.0
ΛK	1668.0	1.3	2083.4	1.0	2261.5	20.0
ΛK^{*}	\cdots	\cdots	2056.6	0.2	2219.0	58.0
ΣK	\cdots	\cdots	2071.6	4.6	2252.3	6.0
ΣK^{*}	\cdots	\cdots	\cdots	\cdots	2253.9	16.0
D wave						
$N \phi$	\cdots	\cdots	2076.3	0.3	2254.4	0.006
ΛK^{*}	\cdots	\cdots	2076.3	0.4	2253.6	0.6
ΣK^{*}	\cdots	\cdots	\cdots	\cdots	2254.0	0.06
$\Sigma^{*} K$	\cdots	\cdots	2076.8	0.01	2253.3	0.8

TABLE V. The resonance mass and decay width (in MeV) of the molecular pentaquarks with $J^{P}=\frac{3}{2}$.

	ΣK^{*}		$\Sigma^{*} K$		$\Sigma^{*} K^{*}$	
S wave	M_{r}	Γ_{i}	M_{r}	Γ_{i}	M_{r}	Γ_{i}
$N \phi$	2060.6	10.4	\cdots	\cdots	2270.5	0.03
ΛK^{*}	2046.1	15.0	\cdots	\cdots	2256.5	2.0
ΣK^{*}	\ldots	\ldots	\cdots	\cdots	2270.6	0.1
$\Sigma^{*} K$	2054.1	2.3	\cdots	\cdots	2263.6	3.7
D wave						
$N \eta^{\prime}$	2061.4	0.001	1875.7	0.0004	2269.2	0.01
$N \phi$	2061.0	0.2	\cdots	\cdots	2269.3	0.01
ΛK	2060.6	0.9	1871.6	0.08	2269.2	0.02
ΛK^{*}	2059.1	0.3	\cdots	\cdots	2269.1	0.05
ΣK	2060.3	0.9	1871.6	0.05	2269.2	0.02
ΣK^{*}	\cdots	\cdots	\cdots	\cdots	2269.2	0.003

FIG. 2. The cross section of all open channels for the state ΣK^{*} with $J^{P}=\frac{3-}{2}$.

VI. Summary

1. Hidden-strange pentaquark

1 bound state: $\quad J^{P}=1 / 2^{-} N \eta^{\prime}$
8 resonance states:

$$
J^{P}=1 / 2^{-} \Sigma \mathrm{K}, \Sigma \mathrm{~K}^{*}, \Sigma * \mathrm{~K}^{*}
$$

$$
J^{P}=3 / 2^{-} \Sigma * K\left(N^{*}(1875)\right), \Sigma K *\left(N^{*}(2100)\right), \Sigma * K *, N \phi
$$

$$
J^{P}=5 / 2^{-} \Sigma^{*} K^{*}
$$

2. Hidden-charm pentaquark

$$
\begin{array}{ll}
1 \text { bound state: } & \boldsymbol{J}^{P}=1 / 2^{-} \mathrm{Nnc} \\
8 \text { resonance states: } & \boldsymbol{J}^{P}=1 / 2^{-} \Sigma \mathrm{cD}(\operatorname{Pc}(4312)), \Sigma \mathrm{cD} *(\operatorname{Pc}(4457)), \Sigma \mathrm{c}^{*} \mathrm{D}^{*} \\
& \boldsymbol{J}^{P}=3 / 2^{-} \Sigma \mathrm{c} * \mathrm{D}(\operatorname{Pc}(4380)), \Sigma \mathrm{cD} *(\operatorname{Pc}(4440)), \Sigma \mathrm{c} * \mathrm{D} *, \mathrm{NJ} / \psi \\
& \boldsymbol{J}^{P}=5 / 2^{-} \Sigma \mathrm{c}^{*} \mathrm{D}^{*}
\end{array}
$$

3. Hidden-bottom pentaquark

$$
\begin{array}{ll}
1 \text { bound state: } & J^{P}=1 / 2^{-} \mathrm{N} \eta \mathrm{~b} \\
8 \text { resonance states: } & J^{P}=1 / 2^{-} \Sigma \mathrm{bB}, \Sigma \mathrm{~b} \mathrm{~B}^{*}, \Sigma \mathrm{~b}^{*} \mathrm{~B}^{*} \\
\boldsymbol{J}^{P}=3 / 2^{-} \Sigma \mathrm{b} * \mathrm{~B}, \Sigma \mathrm{~b} \mathrm{~B} *, \Sigma \mathrm{~b} * \mathrm{~B} *, \mathrm{NY} \\
\boldsymbol{J}^{P}=5 / 2^{-} \Sigma \mathrm{b}^{*} \mathrm{~B}^{*}
\end{array}
$$

Thanks for your attention!

