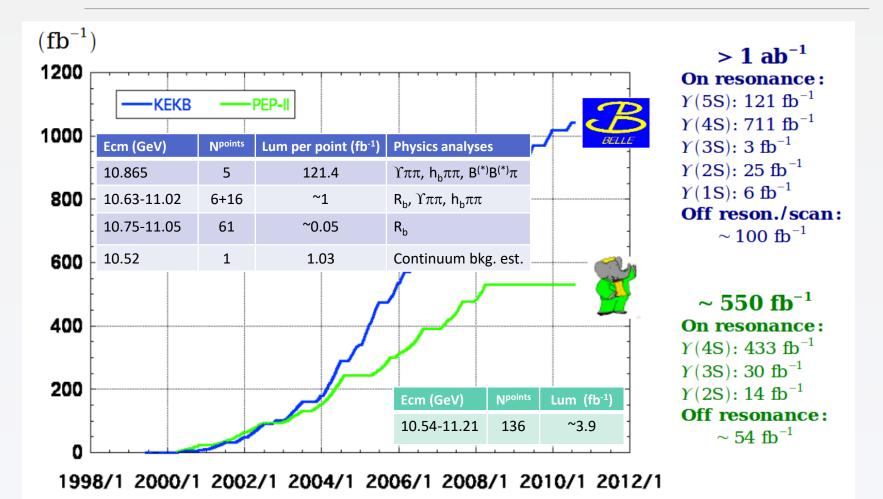
Observation of the Y(4626) and other Y states at Belle

Xuyang GAO

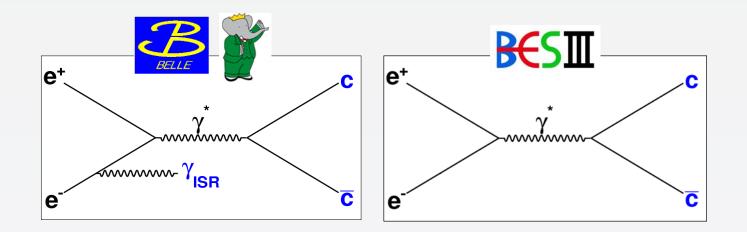
12 January 2020

1

Outline


Charmonium-like state Y(4660)/Y(4626)

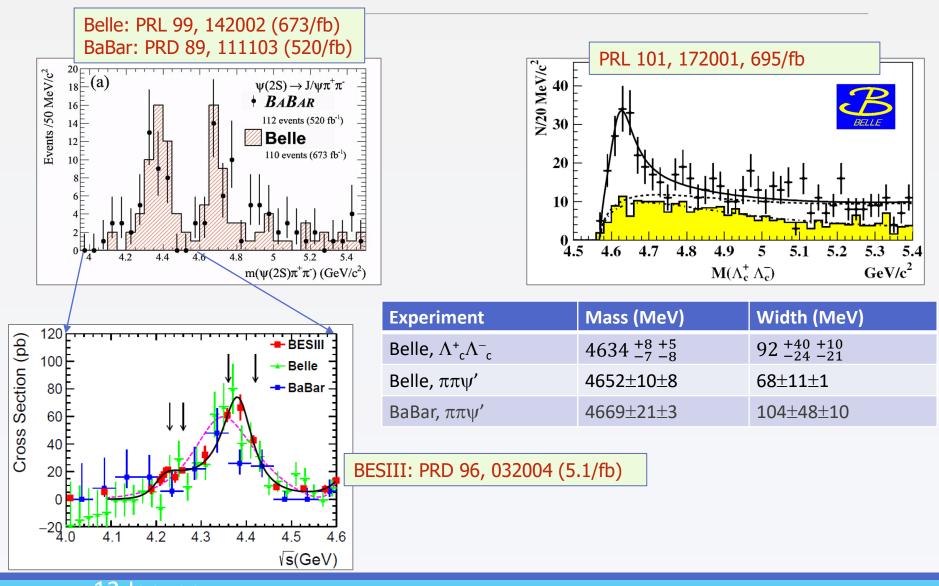
- Search for Y(4660) in $B^+(\overline{B}{}^0) \to K^+(\overline{K}{}^0)\Lambda_c^+\overline{\Lambda}_c^-$
- Y(4626) in $e^+e^- \rightarrow \gamma_{ISR}D_s^+D_{s1}(2536)^- (\rightarrow \overline{D}^{*0}K^-/D^{*-}K_S^0)+c.c.$
- Combined fit on $\pi^+\pi^-\psi'$, $D_s^+D_{s1}^-$, $\Lambda_c^+\Lambda_c^-$, for Y state at 4.6 GeV


Bottomonium-like state Y(10750)
 ■ Y(10750) in e⁺e⁻→π⁺π⁻Y(nS)
 ■ Fit Y(10750) on R_b (BaBar+Belle)

•
$$e^+e^- \rightarrow \gamma \chi_{cJ} / \gamma \eta_c$$

• χ_{c1} in $e^+e^- \rightarrow \gamma \chi_{c1}$
• Cross sections $e^+e^- \rightarrow \gamma \chi_{c1}$

Integrated luminosity of B factories



Y state at around 4.63 GeV

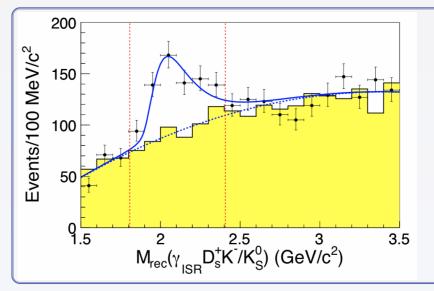
- Y states are good candidates for new types of exotic particles and stimulated many theoretical interpretations.
- Many Y states above DD threshold are observed/confirmed by B factories via ISR process, compatible with results in BESIII.

Review of the Y states at around 4.6 GeV

Search for Y(4660) and its spin partner in $\mathbf{B}^+(\overline{\mathbf{B}}^0) \to \mathbf{K}^+(\overline{\mathbf{K}}^0) \Lambda_{\mathbf{c}}^+ \overline{\Lambda}_{\mathbf{c}}^-$ at Belle

2020

- No Y(4660) and its spin partner Y_{η} were observed in the $\Lambda_c^+ \overline{\Lambda}_c^$ invariant mass distribution.
- 90% C.L. upper limits of $B^+ \rightarrow K^+Y(4660) \rightarrow K^+\Lambda_c^+\overline{\Lambda}_c^-$ and $B^+ \rightarrow K^+Y_\eta \rightarrow K^+\Lambda_c^+\overline{\Lambda}_c^-$ are 1.2× 10⁻⁴ and 2.0 × 10⁻⁴.


• 90% C.L. upper limits of $\overline{B}^0 \rightarrow \overline{K}^0 Y(4660) \rightarrow K^+ \Lambda_c^+ \overline{\Lambda}_c^-$ and $\overline{B}^0 \rightarrow K^0 Y_\eta \rightarrow K^+ \Lambda_c^+ \overline{\Lambda}_c^-$ are 2.3 × 10⁻⁴ and 2.2 × 10⁻⁴.

Y(4626) in $e^+e^- \rightarrow \gamma_{ISR}D_s^+D_{s1}(2536)^- (\rightarrow \overline{D}^{*0}K^-/D^{*-}K_s^0)+c.c.$

For $\overline{D}^{*0}K^-$ mode, full reconstruction of the γ_{ISR} , D_s^+ , and K^- .

 $D_{s}: K^{+}K^{-}\pi^{+}, K_{s}K^{+}, K^{+}K^{-}\pi^{+}\pi^{0}, K_{s}K^{+}\pi^{0}, \eta\pi^{+}, \eta'\pi^{+} \text{, and require } D_{s}^{+}K^{-}\gamma_{ISR} \text{ recoil mass } \sim \overline{D}^{*0} \text{ mass.}$

For $D^{*-}K_{S}^{0}$ mode, full reconstruction of the γ_{ISR} , D_{s}^{+} , and K_{S}^{0} , and do similar selection

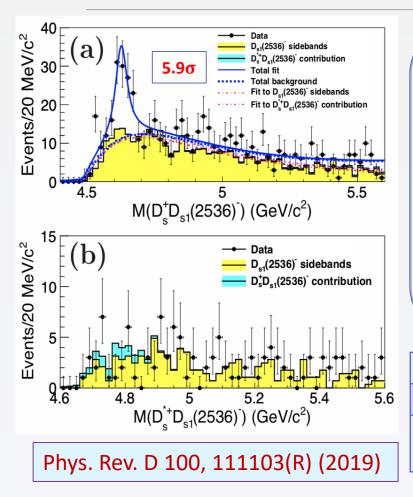
- $M_{rec}(\gamma_{ISR}D_s^+K^-/K_s^0)$ distribution is making before applying the \overline{D}^{*0}/D^{*-} mass constraint.
- Due to the poor mass resolution, the D
 ^{*0}/D^{*-} signal is very wide.
- The yellow histogram shows the normalized $\rm D_{s1}(2536)^-$ mass sidebands.

Phys. Rev. D 100, 111103(R) (2019)

12 January 2020

Y(4626) in e⁺e⁻ →
$$\gamma_{ISR}D_{s1}^{+}D_{s1}(2536)^{-}(\rightarrow \overline{D}^{*0}K^{-}/D^{*-}K_{S}^{0})$$
+c.c.

To improve mass resolution, $M_{rec}(\gamma_{ISR}D_s^+K^-)$ is constrained to nominal mass of \overline{D}^{*0} The resolution of $M_{rec}(\gamma_{ISR})$ is drastically improved (~180 \rightarrow ~ 5 MeV).


$$M_{rec}(\gamma_{ISR}D_{s}^{+}K^{-}) = \sqrt{(E_{c.m.}^{*} - E_{\gamma_{ISR}D_{s}^{+}K^{-}}^{*})^{2} - (p_{\gamma_{ISR}D_{s}^{+}K^{-}}^{*})^{2}}$$

- $M_{rec}(\gamma_{ISR}D_s^+)$ distribution is making after applying the \overline{D}^{*0}/D^{*-} mass constraint.
- The yellow histogram shows the normalized D⁺_s mass sidebands.
- The fit yields $275\pm32 D_{s1}(2536)^-$ signal events with the statistical significance of 8.0σ .

Phys. Rev. D 100, 111103(R) (2019)

Y(4626) in e⁺e⁻ → $\gamma_{ISR}D_{s}^{+}D_{s1}(2536)^{-}(→ \overline{D}^{*0}K^{-}/D^{*-}K_{S}^{0})+c.c.$

An unbinned simultaneous likelihood fit:

- Signal: BW convolved with a Gaussian function, then multiplied by an efficiency function
- $D_{s1}(2536)^-$ mass sidebands: threshold function
- $e^+e^- \rightarrow D_s^{*+}D_{s1}(2536)^-$ background: threshold function
- non-resonant: two-body phase space

$$\begin{split} \mathsf{M} &= (4625.\,9^{+6.2}_{-6.0}(stat.\,)\pm 0.\,4(syst.\,)\,\mathsf{MeV/c^2} \\ &\Gamma &= (49.\,8^{+13.9}_{-11.5}(stat.\,)\pm 4.\,0(syst.\,)\,\mathsf{MeV} \\ &\Gamma_{ee}\times \mathcal{B}(Y\to D_s^+D_{s1}(2536)^-)\times \mathcal{B}(D_{s1}\big(2536)^-\to \overline{D}^{*0}K^-\big) = \\ &\quad (14.\,3^{+2.8}_{-2.6}(stat.\,)\pm 1.\,5(syst.\,)\,eV \end{split}$$

Possible background from $e^+e^- \rightarrow D_s^{*+}(\rightarrow D_s^+\gamma)D_{s1}(2536)^-$, where the photon from the D_s^{*+} remains undetected is studied in data, no obvious structure is observed in $e^+e^- \rightarrow D_s^{*+}(\rightarrow D_s^+\gamma)D_{s1}(2536)^-$.

Interpretation of the Y(4626)

Tetraquark state

- Yue Tan and Jialun Ping, "Y(4626) in a chiral constituent quark model", arXiv:1911.02461
- Chengrong Denga, Hong Chen, and Jialun Ping, "Can the state Y(4626) be a P-wave tetraquark state [cs][cs]?", arXiv:1912.07174

Molecular state

➢ Jun He, Yi Liu, Jun-Tao Zhu, Dian-Yong Chen, "Y(4626) as a molecular state from interaction $D_s^* \overline{D}_{s1}(2536) - D_s \overline{D}_{s1}(2536)$ ", arXiv:1912.08420

High charmonia

➢ Jun-Zhang Wang, Ri-Qing Qian, Xiang Liu, and Takayuki Matsuki, "Are the Y states around 4.6 GeV from e⁺e[−]annihilation higher charmonia?", arXiv:2001.00175

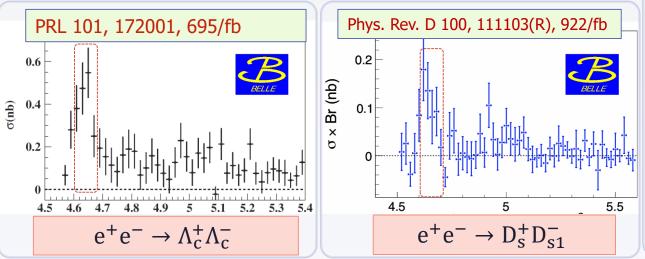
Next, may these rates be estimated according to $D_s D_{s1}(2536)$?

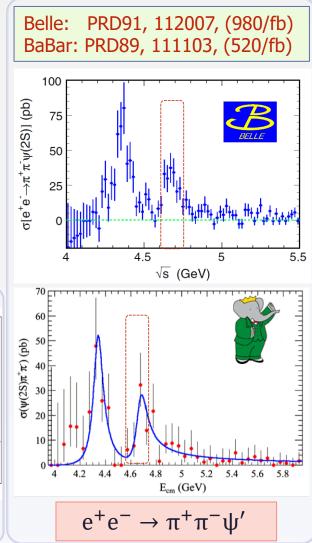
Experimental measurements:

Y(4660) →

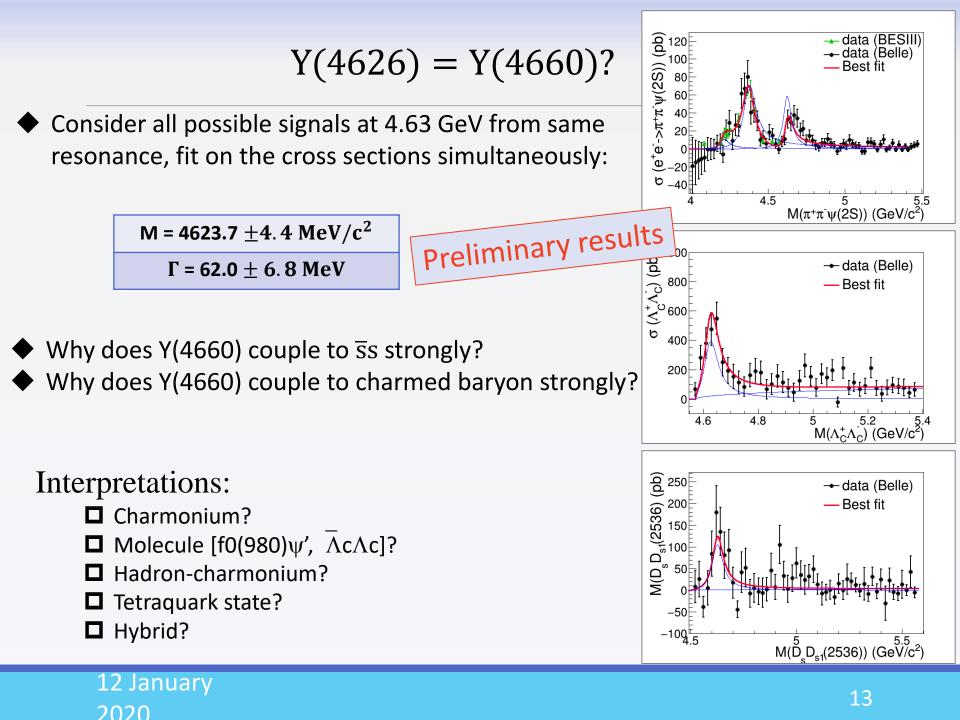
- D_s*D_{s0}(2317)
- D_sD_{s1}(2460)
- D_s*D_{s1}(2460)
- D_sD_{s2}(2573)

at Belle with ISR; and at BESIII with data to be taken in 2019-2020 running year

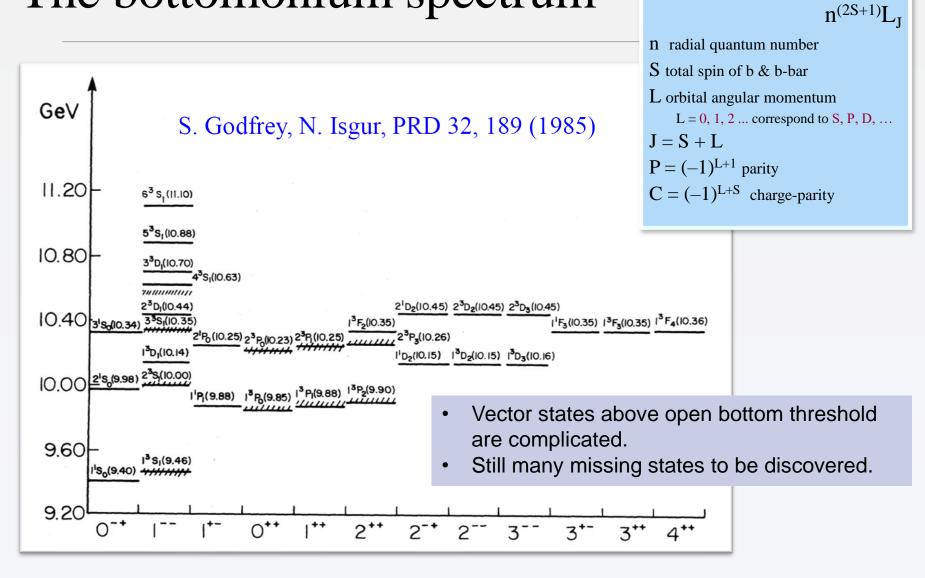

(E_{cm} = 4.62, 4.64, 4.66, 4.68, 4.70 GeV, 500 pb⁻¹ at each energy points)


Y(4626) = Y(4660)?

Similar mass and width of Y state at around 4.6 GeV in

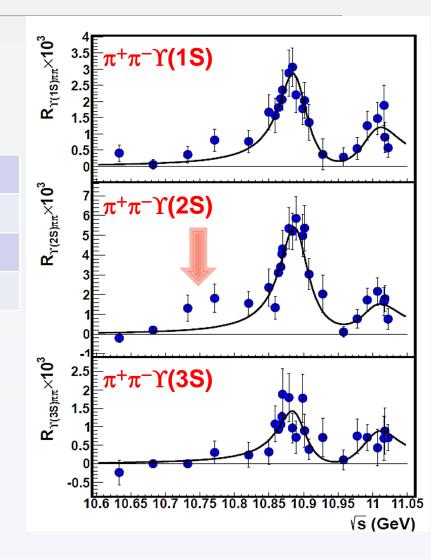

following channels, are they from same resonance?

Experiment	Mass (MeV)	Width (MeV)
Belle, $\Lambda^{+}_{\ c}\Lambda^{-}_{\ c}$	$4634 {}^{+8}_{-7} {}^{+5}_{-8}$	$92 \begin{array}{c} +40 \\ -24 \end{array} \begin{array}{c} +10 \\ -21 \end{array}$
Belle, $\pi\pi\psi'$	4652±10±8	68±11±1
BaBar, $\pi\pi\psi'$	4669±21±3	104±48±10
Belle, D _s D _{s1}	4625.9 $^{+6.2}_{-6.0}\pm0.4$	49.8 $^{+13.9}_{-11.5} \pm 4.0$



12 January 2020

The bottomonium spectrum


Visible cross sections of $e^+e^- \rightarrow \pi^+\pi^- \Upsilon(nS)$

Tag Υ(nS)→μ⁺μ⁻ and select π⁺π⁻
 Fit on the mass spectrum with |A₅₅+e^{iφ}A₆₅|²

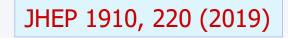
Υ (5S)	Mass	(10891.9 \pm 3.2 \pm ^{0.6} _{1.5}) MeV
	Width	(53.7 ± ^{7.1} _{5.6} ± ^{0.9} _{5.4}) MeV
Υ (6S)	Mass	(10987.5 $\pm^{6.4}_{2.5} \pm^{2.2}_{2.1}$) MeV
	Width	(61 ± ⁹ ₁₉ ± ² ₂₀) MeV

- Results agree with previous measurements
- There seems a resonance at 10.75 GeV?

PRD 93, 011101(R) (2016)

<u>Update</u> cross sections of $e^+e^- \rightarrow \pi^+\pi^- \Upsilon(nS)$

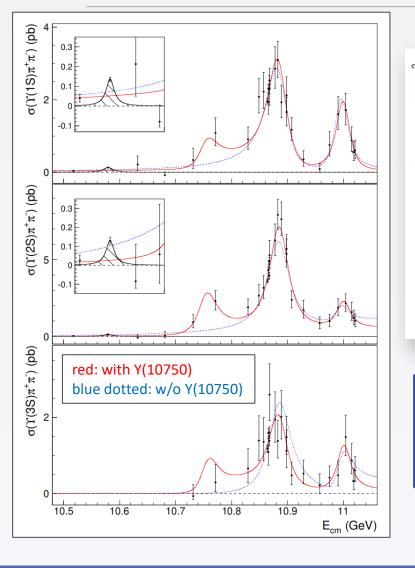
Same data samples, but with improved analysis

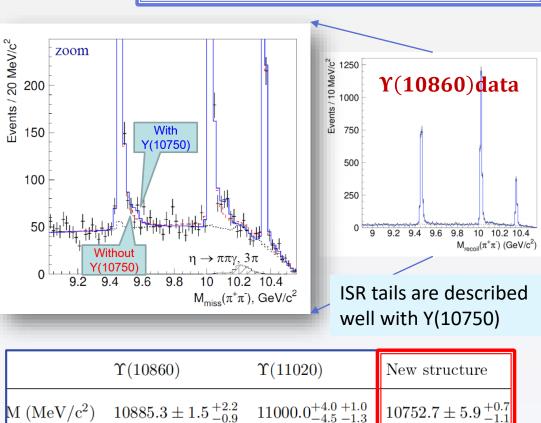

Previous analysis

- tag $\Upsilon(nS) \rightarrow \mu^+ \mu^-$ and select $\pi^+ \pi^-$
- Count numbers of events in signal and sideband regions
- Reported visible cross section

New analysis

- tag $\Upsilon(nS) \rightarrow \mu^+ \mu^- / e^+ e^-$ and select $\pi^+ \pi^-$
- Fit with well constrained signal and background shapes
- ◆ Initial state radiation correction is considered, and ISR of Y(5S) peak data supply useful information on the cross section line shapes


Precision improves by 30% + observation of Y(10750)!

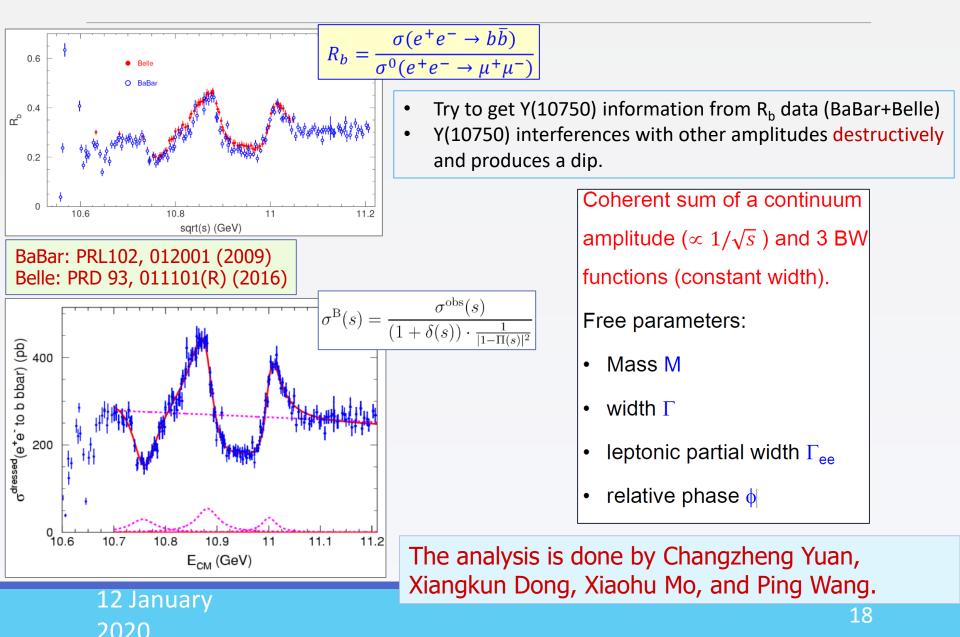


Observation of Y(10750)

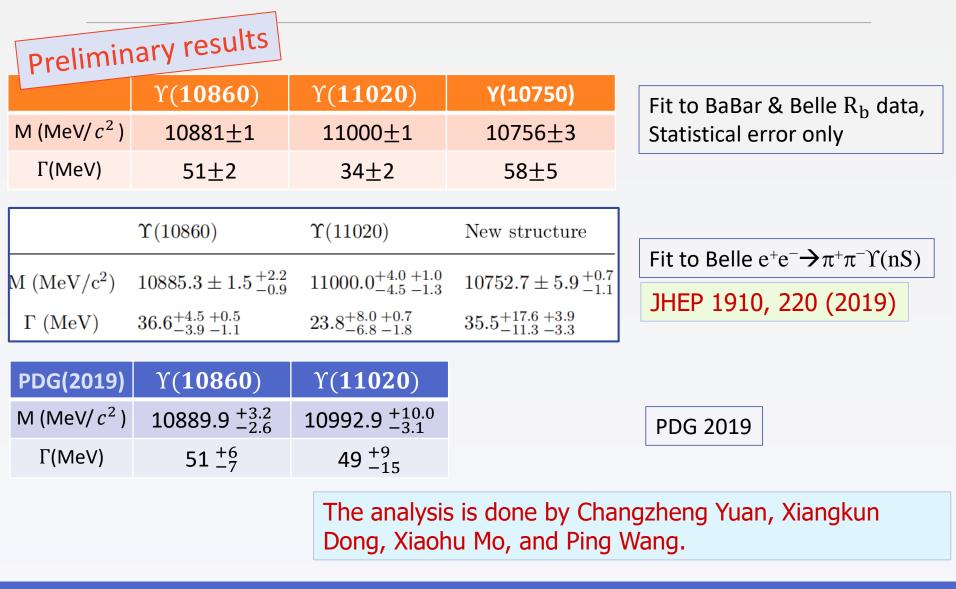
• Scan data: 22 points, each point 1 fb⁻¹

- Y(10860) on-resonance data: 121 fb⁻¹ (10.864 ~ 10.868 GeV)
- Continuum data at 10.52 GeV, 60 fb⁻¹

 $23.8^{+8.0}_{-6.8}{}^{+0.7}_{-1.8}$


Global significance: 6.80	JHEP 1910, 220 (2019)	

 $36.6^{+4.5}_{-3.9}{}^{+0.5}_{-1.1}$


 Γ (MeV)

 $35.5^{+17.6}_{-11.3}{}^{+3.9}_{-3.3}$

BaBar & Belle measured visible and dressed cross sections

Fit results (mass & width)

Fit results (electronic partial width)

Fit to BaBar & Belle R _b data, Statistical error only			
Preliminary results			
	Y(10750)	Ƴ (5 S)	Υ(6S)
$\Gamma_{\rm ee}$ (eV) [sol.1]	13.7±1.8	22.4±1.3	9.5±0.6
$\Gamma_{\rm ee}$ (eV) [sol.2]	14.3±1.9	26.0±1.7	309±13
$\Gamma_{\rm ee}$ (eV) [sol.3]	16.5±2.3	510±19	11.1±0.8
$\Gamma_{\rm ee}$ (eV) [sol.4]	17.2±2.4	594±27	364±18
$\Gamma_{\rm ee}$ (eV) [sol.5]	415±40	25.4±1.8	9.7±0.6
$\Gamma_{\rm ee}$ (eV) [sol.6]	432±43	29.6±2.2	316±13
$\Gamma_{\rm ee}$ (eV) [sol.7]	498±55	580±28	11.4±0.8
$\Gamma_{\rm ee}$ (eV) [sol.8]	519±58	674±37	373±19

The analysis is done by Changzheng Yuan, Xiangkun Dong, Xiaohu Mo, and Ping Wang.

12 January 2020

Fit to Belle $e^+e^- \rightarrow \pi^+\pi^- \Upsilon(nS)$

JHEP 1910, 220 (2019)

Γ _{ee} B(ππΥ) [<mark>e</mark> V]	$\Upsilon(10860)$	$\Upsilon(11020)$	Y(10750)
$\Upsilon(1S)\pi^{+}\pi^{-}$ $\Upsilon(2S)\pi^{+}\pi^{-}$ $\Upsilon(3S)\pi^{+}\pi^{-}$	0.75 - 1.43	0.38 - 0.54	0.12 - 0.47
$\Upsilon(2S)\pi^+\pi^-$	1.35 - 3.80	0.13 - 1.16	0.53 - 1.22
$\Upsilon(3S)\pi^+\pi^-$	0.43 - 1.03	0.17 - 0.49	0.21 - 0.26

If we take the small partial width solutions, BFs of Y/ Υ (nS) \rightarrow Υ (mS) $\pi\pi$ are ~ 1-10% level;

If we take the large partial width solutions, BFs of Y/ Υ (nS) \rightarrow Υ (mS) $\pi\pi$ are ~ 0.1-0.5% level.

Interpretation of the Y(10750)

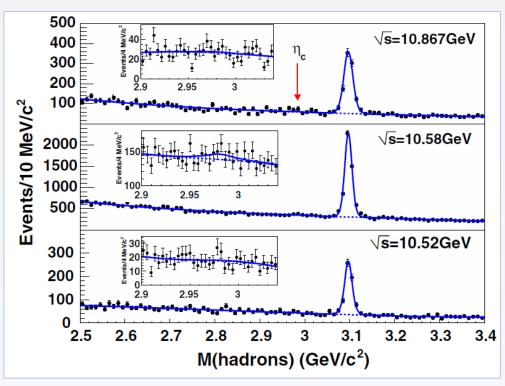
D-wave bottomonium

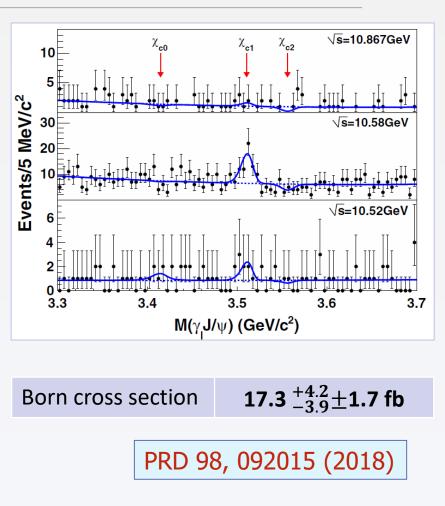
- Bing Chen, Ailin Zhang, Jin He, "Bottomonium spectrum in the relativistic flux tube model (3D)", arXiv:1910.06065
- Qi Li, Ming-Sheng Liu, Qi-Fang Lü, Long-Cheng Gui, Xian-Hui Zhong, "Canonical interpretation of Y(10750) and Y(10860) in the Y family (4D)", arXiv:1905.10344

$\bar{B}^{(*)}B^{(*)}$ dynamically generated pole

Pedro Bicudo, Marco Cardoso, Nuno Cardoso, Marc Wagner, "Bottomonium resonances with I=0 from lattice QCD correlation functions with static and light quarks", arXiv:1910.04827

Hybrid


Jaume Tarrús Castellà, "Spin Structure of heavy-quark hybrids", arXiv:1908.05179


Tetraquark state

- Ahmed Ali, Luciano Maiani, Alexander Ya. Parkhomenko, Wei Wang, "Interpretation of Yb (10753) as a tetraquark and its production mechanism", arXiv:1910.07671
- Zhi-Gang Wang, "Vector hidden-bottom tetraquark candidate: Y(10750)", Chin. Phys. C43 (2019) 123102

 $e^+e^- \rightarrow \gamma \chi_{cJ} / \gamma \eta_c$

- χ_{c1} signal is observed in Υ(4S) sample with significance of 5.2σ
- No evidence of χ_{c0} , χ_{c2} , η_c

 η_c is reconstructed in five final states

Cross section of $e^+e^- \rightarrow \gamma \chi_{c1}$

• Combining the measurement of $\sigma_B(e^+e^- \rightarrow \gamma \chi_{c1})$ in BESIII and this analysis,

Cross section as a function of 1/sⁿ is shown:

 $1/s^{2.1}^{+0.3}_{-0.4}\pm 0.3$ Cross section s-dependence Chin. Phys. C 39, 041001 (2015) 10⁴ 10³ 10² σ_B (fb) Dependence of $e^+e^- \rightarrow \gamma \chi_{c1}$ 10 ---- BESIII results for e⁺e⁻→γχ_{c1} **BELLE results for e**⁺e⁻ $\rightarrow \gamma \chi_{c1}$ 10⁻¹ 5 6 8 9 10 4 11 √s (GeV)

- Adding an additional possible resonance, such as ψ(4040),ψ(4160),ψ(4260), or Υ(4S), the largest change in the fitted value of n is 0.3
- The result is consistent with the prediction by NRQCD with all leading relativistic corrections included

PRD 98, 092015 (2018)

Summary

• Belle try to search for Y(4660) and its spin partner in $B^+(\overline{B}^0) \to K^+(\overline{K}^0)\Lambda_c^+\overline{\Lambda}_c^-$, 90% C.L. upper limits of $B^+(\overline{B}^0) \to K^+(\overline{K}^0)Y(4660)(\to \Lambda_c^+\overline{\Lambda}_c^-)$ are set.

$$\begin{split} B^+ &\to K^+ Y(4660) \mid K^+ Y_{\eta} \to K^+ \Lambda_c^+ \overline{\Lambda}_c^- & 1.2 \times 10^{-4} \mid 2.0 \times 10^{-4} \\ \overline{B}{}^0 \to \overline{K}{}^0 Y(4660) \mid K^0 Y_{\eta} \to K^+ \Lambda_c^+ \overline{\Lambda}_c^- & 2.3 \times 10^{-4} \mid 2.2 \times 10^{-4} \end{split}$$

• Y(4626) is observed in $e^+e^- \rightarrow \gamma_{ISR}D_s^+D_{s1}(2536)^-+c.c.$

 $M = 4625.9 + 6.2 \pm 0.4 \text{ MeV}$ $\Gamma = 49.8 + 13.9 \pm 4.0 \text{ MeV}$

Maybe: Tetraquark state Molecular state High charmonia

• If combine $\pi^+\pi^-\psi'$, $D_s^+D_{s1}^-$, $\Lambda_c^+\Lambda_c^-$, with assumption that the states at around 4.63 GeV are one, and fit simultaneously:

 $M = 4623.7 \pm 4.4 \text{ MeV}$ $\Gamma = 62.0 \pm 6.8 \text{ MeV}$

Summary

```
• Y(10750) is observed in e^+e^- \rightarrow \pi^+\pi^- \Upsilon(nS)
```

```
Maybe: D-wave bottomonium \bar{B}^{(*)}B^{(*)} dynamically generated pole Hybrid Tetraquark state
```

 $M = 10752.7 \pm 5.9 ^{+0.7}_{-1.1} \text{ MeV}$ $\Gamma = 35.5 ^{+17.6}_{-11.3} ^{+3.9}_{-3.3} \text{ MeV}$

- Measured cross sections agree with previous measurements.
- ◆ Y(10750) interferences with other amplitudes destructively and produces a dip in $e^+e^- \rightarrow \overline{b}b$ cross sections.
- Leptonic partial widths of Y(10750), Y(10860), Y(11020) can be determined by fitting on the combined BaBar & Belle R_b data.

Summary

- χ_{c1} signal is observed in Υ (4S) sample in the process $e^+e^- \rightarrow \gamma \chi_{c1}$
- Combining the measurement of $\sigma_B(e^+e^- \rightarrow \gamma \chi_{c1})$ in BESIII, cross sections are fitted as a function of $1/s^n$, and result is consistent with the prediction by NRQCD with all leading relativistic corrections included

$\sigma_B({ m e^+e^-} ightarrow \gamma \chi_{c1})$ at Y(4S)	17.3 ^{+4.2} _{-3.9} ±1.7 fb
Cross section s-dependence	$1/s^{2.1}$ ^{+0.3} _{-0.4} ±0.3

Further data in Belle2 & BESIII data expected for deeper understanding on these Y states.