Recent results of heavy flavour physics at ATLAS

Weimin Song (宋维民)

Jilin University weiminsong@jlu.edu.cn

6th workshops on the XYZ particles

1

Outline

Introduction of heavy flavour physics program at ATLAS

Five topics:

- 1. Search for the X(5568) in $B_s^0 \pi^{\pm}$ final states (PRL 120, 202007 (2018))
- 2. Observation of an Excited B_c[±] Meson State (PRL 113, 212004 (2014))

3. ϕs and $\Delta \Gamma s$ measurement in the Bs⁰ \rightarrow J/ $\Psi \phi$ channel (JHEP 08 (2016) 147, ATLAS-CONF-2019-009)

4. Bs⁰ (and B⁰) $\rightarrow \mu\mu$ measurement (JHEP 04 (2019) 098)

5. $\Psi(2S)$ and X(3872) production (JHEP 01 (2017) 117)

Heavy Flavour physics program at ATLAS

- ◆ Precision measurement to find hint of derivation from SM: rare decays, such B_s⁰->µ⁺µ⁻ branching fraction measurement.....
- Production and decay of heavy flavour hadrons to understand the strong interaction, such as the discovery of B_c(2S).....
- Usually, two muons with a common vertex with invariant mass near J/Ψ are required: the inner tracker and muon detector are used

D0 Collaboration reported evidence of the $X(5568) \rightarrow B_s^0 \pi^{\pm}$, $B_s^0 \rightarrow J/\Psi \phi$, and reported consistent result in the semi-leptonic decay of B_s^0 :

Mass ~ 5568 MeV; Width ~ 20 MeV Good candidate for tetraquark state

LHCb, CMS at LHC and CDF at Tevatron revealed no signal with similar techniques.

- Di-muon trigger is used
- * Four final states from $B_s^0 \rightarrow J/\Psi \phi \rightarrow \mu \mu$ KK are fitted to a common vertex
- Mass constrain of J/Ψ-> µµ; mass cut on 1008.5<m(KK)<1030.5 MeV
- Decay time of $B_s^0 > 0.2 \text{ ps}$
- Primary vertex is chosen as the one with least a0, calculated based on the B_s⁰ vertex and momentum direction
- One track assumed to be π from the primary vertex

S: double Gaussian; B: Exponential

 $p_{T}(B_{s}^{0}) > 10 \text{ GeV}$

 $p_{T}(B_{s}^{0}) > 15 \text{ GeV}$

No obvious X(5568) is observed!

8

Observation of an Excited B_c[±] Meson State

Observation of an Excited B_c[±] Meson State

1. Select the J/Ψ into two opposite charged muons:

pT(high) > 6 GeV; pT(low) > 4 GeV; vertex fit; mass constrain to PDG;

2. Select B_c^{\pm} by adding a pion:

pT > 4 GeV; common vertex to J/Ψ ; cut on the impact parameter of the pion; pT (Bc±) > 15 GeV (18 GeV) for 7 TeV (8 TeV)

Observation of an Excited B_c[±] Meson State

3. Select two pions from the primary vertex:

pT > 400 MeV

4. Fit the mass difference distribution:

Gaussian for signal, third-order polynomial for background

Significance of the new structure

> 5 σ

Fine structure?

 $B_{c}(2S)^{+} \qquad B_{c}^{*}(2S)^{+} \qquad B_{c}^{*$

With the similar technique but larger sample, both CMS and LHCb observed two structures, and updated results on ATLAS to be expected

.

PHYSICAL REVIEW LETTERS 122, 132001

arXiv:1904.0008

φs and $\Delta\Gamma s$ measurement in the Bs^ $\to J/\Psi$ φ

 $V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0$

 ϕ s, the CP violating phase is defined as the phase difference between mixing amplitude and decay amplitude; In SM, it is small, and related to CKM matrix.

World averaged results before Moriond 2019

New result based on 80 fb⁻¹ at 13 TeV will be discussed here

Methodology

Flavour tagger: OST (opposite-side-tagging); lepton charge in semi-leptonic decay of B meson provides strong discrimination.

CP State tagger: CP even if L = 0 or 2; CP odd if L = 1. L is the orbital angular momentum.

Tagger: weighted sum of charge in a cone

Tag method	Efficiency [%]	Effective Dilution [%]	Tagging Power [%]
Tight muon	4.50 ± 0.01	43.8 ± 0.2	0.862 ± 0.009
Electron	1.57 ± 0.01	41.8 ± 0.2	0.274 ± 0.004
Low- $p_{\rm T}$ muon	3.12 ± 0.01	29.9 ± 0.2	0.278 ± 0.006
Jet	5.54 ± 0.01	20.4 ± 0.1	0.231 ± 0.005
Total	14.74 ± 0.02	33.4 ± 0.1	1.65 ± 0.01

Fit results with RUN 2 data

Simultaneous un-binned maximum-likelihood fit contains nine parameters:

 $\Delta \Gamma_s, \ \phi_s, \ \Gamma_s, \ |A_0(0)|^2, \ |A_{\parallel}(0)|^2, \ \delta_{\parallel}, \ \delta_{\perp}, \ |A_S(0)|^2 \text{ and } \delta_S.$

Information used in the fit: mass of Bs⁰; proper decay time and its uncertainty; tagging probability; the transversity angles (defined in the next page)

Parameter	Value	Statistical	Systematic
		uncertainty	uncertainty
ϕ_s [rad]	-0.068	0.038	0.018
$\Delta \Gamma_s [ps^{-1}]$	0.067	0.005	0.002
$\Gamma_s[ps^{-1}]$	0.669	0.001	0.001
$ A_{\parallel}(0) ^2$	0.219	0.002	0.002
$ A_0(0) ^2$	0.517	0.001	0.004
$ A_{S}(0) ^{2}$	0.046	0.003	0.004
δ_{\perp} [rad]	2.946	0.101	0.097
δ_{\parallel} [rad]	3.267	0.082	0.201
$\delta_{\perp} - \delta_S$ [rad]	-0.220	0.037	0.010

17

Fit projection

 $\uparrow z$

Result: combined with RUN1 result

Result: combined with LHCb new result

New HFLAV average $\phi_s = -0.0544 \pm 0.0205$ $\Delta\Gamma_s = 0.0762 \pm 0.0033 \,\mathrm{ps}^{-1}$

ATL-PHYS-PUB-2018-041

ATLAS HL-LHC projection

21

Bs⁰ (and **B⁰**) $\rightarrow \mu\mu$ measurement

New result based on 26 fb⁻¹ at 13 TeV 2015+2016

Methodology: take $B^+ \rightarrow J/\Psi K^+$ as reference

Background

(Left) Particle reconstructed decays: lower dimuon invariant mass(Middle) Peaking background: from muon misidentification(Right) Continuum background: dominant, flat distribution; reduced with BDT.

Fits

4 BDT intervals, and the first two contribute mostly to background modelling

Results

B⁰ limit is most stringent at the moment

ATL-PHYS-PUB-2018-005

ATLAS HL-LHC projection

Based on 11.4 fb⁻¹ at 8 TeV

 $pT(\mu)>4 \text{ GeV}$

 $10 < pT(\pi \pi J/\Psi) < 70 \text{ GeV}$

- Data: -0.3 < τ < 0.025 ps (w₀) Fit
- Data: 0.025 < τ < 0.3 ps (w) $\stackrel{0}{}$ Fit 12 < p_{τ} < 16 GeV
 - **Data:** $0.3 < \tau < 1.5 \text{ ps} (w_2)$ Fit |y| < 0.75
- + Data: $1.5 < \tau < 15 \text{ ps (w}_3)$ Fit

• Data: $-0.3 < \tau < 0.025 \text{ ps } (w_0)$ — Fit • Data: $0.025 < \tau < 0.3 \text{ ps } (w_1)$ — Fit • Data: $0.3 < \tau < 1.5 \text{ ps } (w_2)$ — Fit • Data: $1.5 < \tau < 15 \text{ ps } (w_3)$ — Fit

Use pseudo-proper lifetime to separate prompt and non-prompt production. ³⁰

Production ratio for prompt (a) and non-prompt (b); for non-prompt, long-lived and short-lived are separated also, where the later is from Bc.

The NLO-NRQCD describes the prompt $\Psi(2S)$ pretty well; FONLL (Fixed Order+Next-Leading Log) works well for non-prompt part.

The NLO-NRQCD describes the prompt X(3872) well by assuming it is mixture of $\chi_{C1}(2P)$ and DD* molecular; FONLL overestimates the non-prompt part.

Summary

- 1. X(5568) is searched with ATLAS data, but no hint;
- 2. Excited B_c^{\pm} Meson State is observed with ATLAS data;
- 3. ϕ s and $\Delta\Gamma$ s are measured in the Bs⁰ \rightarrow J/ Ψ ϕ , and results are consistent with SM
- 4. Bs^0 (and B^0) $\rightarrow \mu\mu$ are measured, no surprise
- 5. $\Psi(2S)$ and X(3872) production are studied with pp collision

Thank you very much!