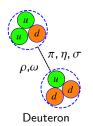
Triton-like molecules

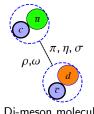
Li Ma

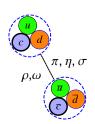
13/01/2020

- Introduction and Motivation
- 2 Tri-baryon systems $\Lambda\Lambda\Lambda$, $\Xi\Xi\Xi$ and $\Sigma\Sigma\Sigma$
- 3 Application to the NNN system
- 4 Numerical results for the ΛΛΛ, $\Xi\Xi\Xi$ and $\Sigma\Sigma\Sigma$
- 5 Some other numerical results
- 6 Summary

The deuteron-like molecules







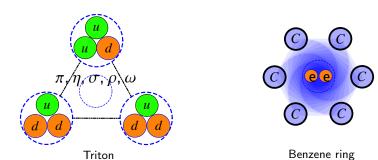
Di-meson molecule

Di-baryon molecule

- $X(3872) \rightarrow D\bar{D}^*$, $D_{s1}(2460) \rightarrow D^*K$, $Z_b(10610) \rightarrow B\bar{B}^*$
- $Y(4260) \rightarrow D_1 \bar{D}, \quad Z_c(3900) \rightarrow D\bar{D}^*, \quad Z_c(4020) \rightarrow D^* \bar{D}^*$
- $P_c(4380) \rightarrow \Sigma_c \bar{D}^*$, $P_c(4450) \rightarrow \Sigma_c^* \bar{D}^*$

3/20

The triton-like molecules



- NDK, KDN, NDD, NKK, DKK, DKK, BBB*, DDK, DD*K, ΩNN and ΩΩN
- Faddeev equation, or FCA expansion method (GEM)

Dimer or isobar formalism

Gaussian

Efimov effect

•
$$B_2 = \frac{\hbar^2}{ma^2} (1 + \mathcal{O}(\frac{r_0}{a}))$$

•
$$B_3(1 + \mathcal{O}(\frac{r_0}{a})) =$$

 $-\frac{\hbar^2}{ma^2} + [e^{-2\pi n}f(\xi)]^{\frac{1}{s_0}}\frac{\kappa_*^2}{m}$

• $s_0 = 1.00624..., \xi$ is defined by $\tan \xi = -(mB_3)^{1/2}a/\hbar$, $f(\xi)$ is a universal function with $f(-\pi/2) = 1$ $K = sgn(E)\sqrt{m|E|}$.

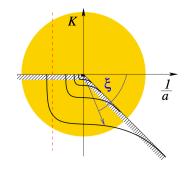


Figure: Efimov plot

Tri-baryon systems $\Lambda\Lambda\Lambda$, $\Xi\Xi\Xi$ and $\Sigma\Sigma\Sigma$

The OBE interaction indicates that there is only one virtual boson exchanged by any two constituents as shown in the following.

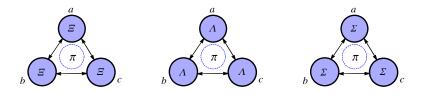


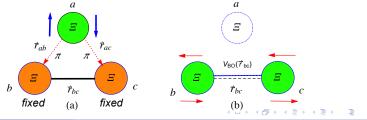
Figure: Dynamical illustration of the $\Lambda\Lambda\Lambda$, $\Xi\Xi\Xi$ and $\Sigma\Sigma\Sigma$ systems with a circle describing the delocalized π bond inside.

Monopole form factor $\mathcal{F}(q) = \frac{\Lambda^2 - m_{\alpha}^2}{\Lambda^2 - q^2}$, $(\alpha = \pi, \eta, \rho, \omega, \sigma, \phi)$ with q the four-momentum of the pion and Λ the cutoff parameter.

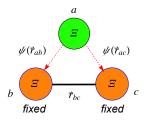
◆ロト ◆部ト ◆差ト ◆差ト 差 めらぐ

Born-Oppenheimer potential

- Considering that the particle b and c are static with the separation r_{bc} , one can separate the degree of freedom of a from the three-body system.
- We assume the distance r_{bc} is a parameter. The mesons b and c are static, and have one-pion interactions with meson a, which can be viewed as two static sources.
- We explore the dynamics for the meson a in the limit $r_{bc} \to \infty$, and subtract the binding energy for the break-up state which is trivial for the three-body bound state.



Interpolating wave function of meson a



The zero order of the final wave function for the meson *a* could be the superposition of these two components

$$\psi(\vec{r}_{ab}, \vec{r}_{ac}) = C[\psi(\vec{r}_{ab}) \pm \psi(\vec{r}_{ac})]|\Xi\Xi\Xi\rangle$$

Accordingly, one can obtain the energy eigenvalue of the meson a

$$E_a(\Lambda, \vec{r}_{bc}) = \langle \psi(\vec{r}_{ab}, \vec{r}_{ac}) | H_a | \psi(\vec{r}_{ab}, \vec{r}_{ac}) \rangle$$

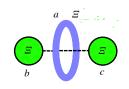
4□▶ 4□▶ 4□▶ 4□▶ □ 900

BO potential and Its physical meaning (Intensity of "glue")

We define the BO potential as

$$V_{BO}(\Lambda, \vec{r}_{bc}) = E_a(\Lambda, \vec{r}_{bc}) - E_2(\Lambda).$$

The BO potential can describe the contribution for the one meson on the dynamics of the two remaining mesons. The meson *a* here works like a mass of "glue".



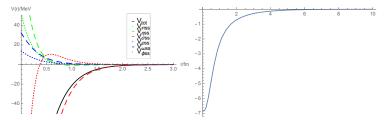


Figure: Here we chose the parameter $\Lambda = 900$ MeV. $E_{I=0}^{\Xi\Xi} = -3.09$ MeV.

$$\Psi_T = \alpha \Phi(\vec{r}_{bc}) \psi(\vec{r}_{ab}, \vec{r}_{ac}).$$

The configurations of the three-body systems

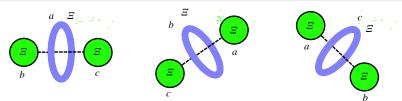


Figure: Every meson can be considered to be a lighter one and separated from the three-body system. Each of them can generate the "glue" for the remaining mesons.

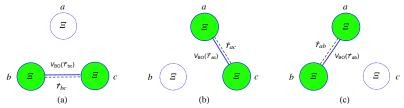


Figure: (a), (b) and (c) correspond to the wave functions $\psi_{a} = \Phi(\vec{r}_{bc})\psi(\vec{r}_{ab}, \vec{r}_{ac})$, $\psi_{\it k} = \Phi(\vec{r}_{\it ac})\psi(\vec{r}_{\it ab},\ \vec{r}_{\it bc})$ and $\psi_{\it c} = \Phi(\vec{r}_{\it ab})\psi(\vec{r}_{\it bc},\ \vec{r}_{\it ac})$, respectively.

Interpolating wave functions

The basis constitute a configuration space $\{\psi_{\not a}, \ \psi_{\not b}, \ \psi_{\not c}\}$.

$$\begin{split} \Psi_{\mathcal{T}} &= \alpha \Phi(\vec{r}_{bc}) \psi(\vec{r}_{ab}, \ \vec{r}_{ac}) + \beta \Phi(\vec{r}_{ac}) \psi(\vec{r}_{ab}, \ \vec{r}_{bc}) + \gamma \Phi(\vec{r}_{ab}) \psi(\vec{r}_{bc}, \ \vec{r}_{ac}) \\ &= \alpha \psi_{\not \beta} + \beta \psi_{\not \beta} + \gamma \psi_{\not c} = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}, \end{split}$$

Expand $\Phi(\vec{r}_{bc})$, $\Phi(\vec{r}_{ac})$ and $\Phi(\vec{r}_{ab})$ as a set of Laguerre polynomials

$$\chi_{nl}(r) = \sqrt{\frac{(2\lambda)^{2l+3}n!}{\Gamma(2l+3+n)}} r^l e^{-\lambda r} L_n^{2l+2}(2\lambda r), \quad n = 1, 2, 3...$$

$$\psi_{\not\ni} = \sum_{i} \phi_{i}(\vec{r_{bc}}) \psi(\vec{r_{ab}}, \ \vec{r_{ac}}), \psi_{\not\triangleright} = \sum_{i} \phi_{i}(\vec{r_{ac}}) \psi(\vec{r_{ab}}, \ \vec{r_{bc}}), \psi_{\not\leftarrow} = \sum_{i} \phi_{i}(\vec{r_{ab}}) \psi(\vec{r_{bc}}, \ \vec{r_{ac}})$$

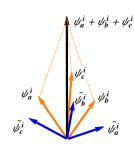
Orthonormalization

We orthonormalize the $\{\psi_{\not \! a},\ \psi_{\not \! b},\ \psi_{\not \! c}\}$ into a new basis $\{\tilde{\psi}_{\not \! a},\ \tilde{\psi}_{\not \! b},\ \tilde{\psi}_{\not \! c}\}$.

$$\tilde{\psi}^{i}_{\not\beta} = \frac{1}{N_{i}} \left[(\psi^{i}_{\not\beta} + \psi^{i}_{\not\beta} + \psi^{i}_{\not\epsilon}) - \sum_{i} x_{ij} \psi^{j}_{\not\beta} \right],$$

$$\tilde{\psi}^{i}_{\not\beta} = \frac{1}{N_{i}} \left[(\psi^{i}_{\not\beta} + \psi^{i}_{\not\beta} + \psi^{i}_{\not\epsilon}) - \sum_{i} x_{ij} \psi^{j}_{\not\beta} \right],$$

$$\tilde{\psi}^{i}_{\not\epsilon} = \frac{1}{N_{i}} \left[(\psi^{i}_{\not\beta} + \psi^{i}_{\not\beta} + \psi^{i}_{\not\epsilon}) - \sum_{i} x_{ij} \psi^{j}_{\not\epsilon} \right],$$



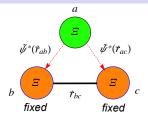
where the x_{ij} is a parameter matrix which will be determined later. The N_i are normalization coefficients.

Then the eigenvector for the three-body system $B_a^{(*)}B_b^{(*)}B_c^{(*)}$ can be written as a vector in the configuration space $\{\tilde{\psi}_{\underline{s}},\ \tilde{\psi}_{\underline{t}},\ \tilde{\psi}_{\underline{t}}\}$. Therefore, we have

$$\Psi_{\mathcal{T}} = \sum_{i} \tilde{\alpha}_{i} \tilde{\psi}^{i}_{\not\beta} + \sum_{j} \tilde{\beta}_{j} \tilde{\psi}^{j}_{\not\beta} + \sum_{k} \tilde{\gamma}_{k} \tilde{\psi}^{k}_{\not\epsilon},$$

4□ > 4□ > 4 = > 4 = > = 90

First order correction



The first order of the final wave function for the meson *a* could be the superposition of these two components

$$\tilde{\psi}^*(\vec{r}_{ab}, \vec{r}_{ac}) = C^*[\tilde{\psi}^*(\vec{r}_{ab}) \pm \tilde{\psi}^*(\vec{r}_{ac})]|\Xi\Xi\Xi\rangle$$

Accordingly, one can obtain the energy eigenvalue of the meson a

$$E_a^*(\Lambda, \vec{r}_{bc}) = \langle \tilde{\psi}(\vec{r}_{ab}, \vec{r}_{ac}) | H_a | \tilde{\psi}(\vec{r}_{ab}, \vec{r}_{ac}) \rangle$$

We define the BO potential as

$$V_{BO}^*(\Lambda, \vec{r}_{bc}) = E_a^*(\Lambda, \vec{r}_{bc}) - E_2(\Lambda).$$

13/01/2020 13/20

Application to the NNN system (Triton or Helium-3 nucleus)

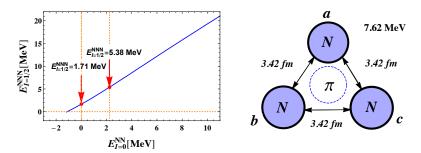


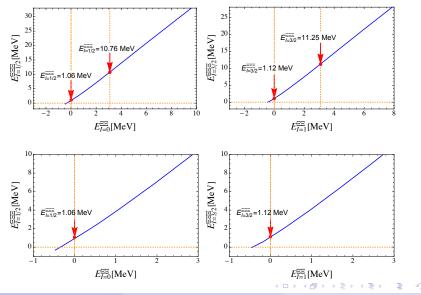
Figure: Dependence of the reduced three-body binding energy on the binding energy of its two-body subsystem (the deuteron). The result is comparable with the empirical binding energies of the triton (8.48 MeV) and helium-3 (7.80 MeV) nuclei.

Numerical results for the NNN system (Triton or Helium-3 nucleus)

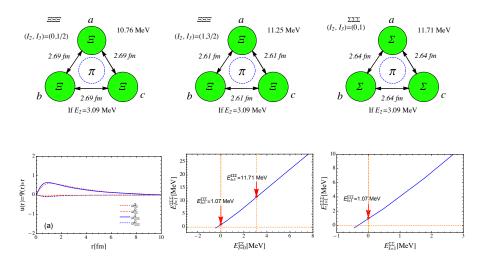
Λ(MeV)	E ₂ (MeV)	E ₃ (MeV)	$E_T(MeV)$	$V_{BO}(0)(MeV)$	S wave(%)	D wave(%)	r _{rms} (fm)
830.00	-0.18	-1.93	-2.11	-4.54	94.01	5.99	4.21
850.00	-0.67	-2.71	-3.38	-5.36	93.36	6.64	4.00
870.00	-1.23	-3.65	-4.88	-6.32	92.68	7.32	3.78
890.00	-1.88	-4.77	-6.66	-7.42	91.99	8.01	3.54
899.60	-2.23	-5.38	-7.62	-8.00	91.66	8.34	3.42
900.00	-2.25	-5.41	-7.66	-8.03	91.64	8.36	3.42
920.00	-3.05	-6.85	-9.90	-9.35	90.97	9.03	3.18
940.00	-3.98	-8.51	-12.49	-10.83	90.35	9.65	2.95
960.00	-5.03	-10.42	-15.45	-12.46	89.76	10.24	2.74
980.00	-6.21	-12.57	-18.78	-14.23	89.23	10.77	2.54
1000.00	-7.55	-14.97	-22.51	-16.14	88.73	11.27	2.37
1020.00	-9.04	-17.61	-26.65	-18.19	88.27	11.73	2.23
1040.00	-10.69	-20.51	-31.20	-20.37	87.84	12.16	2.10

Table: Bound state solutions for the *NNN* system with isospin $I_3=1/2$. E_2 is the energy eigenvalue of its subsystem. E_3 is the reduced three-body energy eigenvalue relative to the break-up state of the *NNN* system. E_T is the total three-body energy eigenvalue relative to the *NNN* threshold.

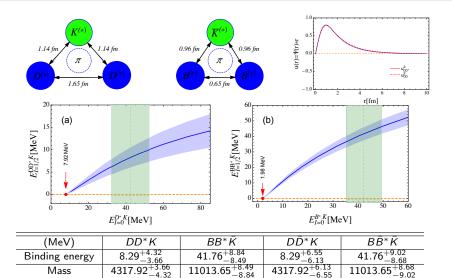
Numerical results for the $\Lambda\Lambda\Lambda$, $\Xi\Xi\Xi$ and $\Sigma\Sigma\Sigma$



Numerical results for the $\Lambda\Lambda\Lambda$, $\Xi\Xi\Xi$ and $\Sigma\Sigma\Sigma$



Numerical results for the Doubly heavy tri-meson bound states



4 D > 4 A > 4 B > 4 B > B = 900

Numerical results for the tri-meson bound state BBB*

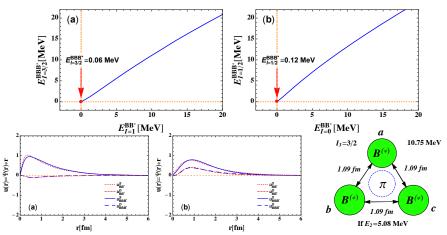


Figure: Here we chose the parameter $\Lambda=1440$ MeV in (a) and $\Lambda=1107.7$ MeV in (b) for a better comparison of all the cases, since they have the same two-body binding energy of 5.08 MeV.

Summary

- We predict that the triton-like molecular states for the $\Xi\Xi\Xi$ and $\Sigma\Sigma\Sigma$ systems are probably existent as long as the molecular states of their two-body subsystems exist.
- In our calculations, we use the Born-Oppenheimer potential method to construct our interpolating wave functions, which can be regarded as a version of the variational principle which always gives an upper limit of the energy of a system.
- Other configurations $NN\Lambda$, $N\Lambda\Lambda$, $NN\Xi$, $N\Xi\Xi$, $NN\Sigma$, $N\Sigma\Sigma$ will be explored in a future work.

Thank you very much!