The LHCb Upgrade and prospects on spectroscopy studies

Yiming Li 李一鸣 Institute of High Energy Physics, CAS

The 6th Workshop on the XYZ Particles @ Fudan, 13th Jan 2020

Content

- Why does LHCb need upgrade(s)?
- What is the plan?
- How does it affect spectroscopy studies?

The current (past) detector

Vertex res.
Time res.
Momentum res.
Mass
Hadron ID
Muon ID
ECAL res.

$$\sigma_{\rm IP} = 20 \ \mu m$$

$$\sigma_{\tau} = 45 \ \text{fs} \quad \text{for } B_s^0 \rightarrow J/\psi \phi \text{ or } D_s^+ \pi^-$$

$$\Delta p/p = 0.4 \sim 0.6\% \ (5 - 100 \ \text{GeV}/c)$$

$$\sigma_m = 8 \ \text{MeV}/c^2 \quad \text{for } B \rightarrow J/\psi X$$

$$\varepsilon(K \rightarrow K) \sim 95\% \quad \text{mis-ID } \varepsilon(\pi \rightarrow K) \sim 5\%$$

$$\varepsilon(\mu \rightarrow \mu) \sim 97\% \quad \text{mis-ID } \varepsilon(\pi \rightarrow \mu) \sim 1 - 3\%$$

$$\Delta E/E = 1\% \oplus 10\%/\sqrt{E \ (\text{GeV})}$$

Detector performance

Excellent vertexing, Γ momentum resolution, and particle identification

Κ

10

n

Cherenkov Angle (mrad)

50

35

25

20F

15

30**⊢**µ

The 6th workshop on the XYZ particles

Operation

Successful data-taking 2010 – 2018: integrated luminosity of 9 fb⁻¹.

Pentaquark: example of Run 1+2 physics

- Observation of two pentaquark states Pc(4380)+ and Pc(4450)+ in $\Lambda_b \rightarrow J/\psi pK^-$ decay in 2015
- With more (Run 1+2) data, the yield is an order of magnitude higher ⇒ more structures revealed!

Motivation of upgrade

- More data, higher discovery potential!
- Why not fully exploit what LHC offers?
 - Saturation of hadronic trigger at higher lumi due to 1MHz hardware trigger
 - Performance degradation with increase of detector occupancy
 - Limited radiation hardness of trackers

The 6th workshop on the XYZ particles

Goal of upgrade Phase I

- More data, higher discovery potential!
- Why not fully exploit what LHC can offer?
 - Saturation of hadronic trigger at higher lumi due to 1MHz hardware trigger
 - Performance degradation with increase of detector occupancy
 - Limited radiation hardness of trackers
- Increase the instantaneous lumi to 2×10^{33} cm⁻²s⁻¹ (5 × now)
- Remove the 1 MHz hardware trigger
 - All detectors read out @ 40MHz \Rightarrow new FE electronics & readout network
 - Flexible software trigger entirely on a CPU farm
- Sub-detectors work at higher lumi
 - High granularity for higher occupancy
 - Radiation tolerance

The way ahead - LHCb upgrade plans

LHCb Upgrade Phase I

Trigger system

Hardware trigger removed!

LHCb 2015 Trigger Diagram

Vertex Locator (VELO)

- Similar geometry as the old one
- Strip in r- ϕ → Hybrid pixel detector
- VeloPix ASIC, 256 × 256, readout@40MHz
- More radiation hard sensor:
 - $\Phi_{max} \sim 7 \times 10^{14} \rightarrow 8 \times 10^{15} n_{eq} \text{ cm}^{-2}$
- Closer approach to beampipe
- State-of-the-art microchannel cooling

Upstream Tracker's (UT) role

High tracking efficiency

• Crucial for efficient reconstruction of particles decaying after VELO: K_S , Λ when combined with SciFi

Fast tracking algorithm

 Reduction of 'ghost' tracks, speed up upstream & downstream matching, hence allowing a more performant tracking and triggering algorithms

UT design & installation

- Improved coverage and granularity wrt. TT
- Radiation hard sensor to tolerate $\Phi_{max} \sim 5 \times 10^{14} n_{eq} \text{cm}^{-2}$
- 40MHz FE readout near sensor
- More digital processing at end of detector
- IHEP group is key player setting up the slice test, installing the first stave, and studying the radiation effect on the FE chip

Scintillating Fiber Tracker (SciFi)

- Tracking stations replaced by 3station scintillating fiber detector
- 340 m² sensitive area
- Readout with 4096 SiPMs + custom made PACIFIC ASIC. A total of ~ 0.5 M SiPM channels!
- Spatial resolution ~70 um in X
- Single hit efficiency ~99%
- Tsinghua University designed FE electronics PACIFIC for SciFi;
 Finished production of all PACIFIC boards with high quality (Now at CERN for installation)

Further ahead: Upgrade II

- Can we fully profit from the HL-LHC?
- What can we do with 300 fb⁻¹ data?

Possibilities in Upgrade Phase II

Upgrade II approved to proceed to Framework TDR by LHCC

Tracking

Calorimeter

- Severe radiation
 - \rightarrow Replacement with radiation technology for innermost or y=0
- Overlapping showers
 → Smaller Molière radius, finer cells
- Huge # combinatorics from π^0 → Fast timing information desired
- Options being discussed
 - Homogenous crystal with longitudinal segmentation
 - Shashilik or SpaCal with a crystal component for timing
 - Preshower layer of Si for timing
- Interests from Chinese groups

Prospects for Upgrade I

- Integrate luminosity increase:
 - 9 fb⁻¹ (now) \rightarrow 23 fb⁻¹ (end of Run 3) / 50 fb⁻¹ (end of Run 4)
- Opportunities for
 - Baryon spectroscopy
 - Charmonia(-like) states studies in decays
 - Pentaquark studies
- A few recent results from Run 1+2 to give an idea ...

Evidence of Zc(4100)⁻ in $B \rightarrow \eta_c(1S)K^+\pi^-$

EPJC 78 (2018) 1019

- $Zc \rightarrow \eta_c \pi^-$
 - 4.8σ for $J^P = 1^-$
 - 0⁺ also allowed
 - NB: all Zc observed so far in Y(4260), with $J^P = 1^+$

Newly observed b baryons

Excited Ω_b (bss) in $\Xi_b^0 K^-$ final state

arXiv: 2001.00851

 $m(\Omega_b(6316)^-) = 6315.64 \pm 0.31 \pm 0.07 \pm 0.50 \text{MeV},$ $m(\Omega_b(6330)^-) = 6330.30 \pm 0.28 \pm 0.07 \pm 0.50 \text{MeV},$ $m(\Omega_b(6340)^-) = 6339.71 \pm 0.26 \pm 0.05 \pm 0.50 \text{MeV},$ $m(\Omega_b(6350)^-) = 6349.88 \pm 0.35 \pm 0.05 \pm 0.50 \text{MeV},$

- New resonances in $\Lambda_b \pi^+ \pi^-$ final state
 - Possibly a doublet of $\Lambda_b(1D)$ states

 $\begin{array}{lll} m_{\Lambda_{\rm b}(6146)^0} &=& 6146.17 \pm 0.33 \pm 0.22 \pm 0.16 \, {\rm MeV} \,, \\ m_{\Lambda_{\rm b}(6152)^0} &=& 6152.51 \pm 0.26 \pm 0.22 \pm 0.16 \, {\rm MeV} \,, \\ \Gamma_{\Lambda_{\rm b}(6146)^0} &=& 2.9 \, \pm 1.3 \, \pm 0.3 \, \, {\rm MeV} \,, \\ \Gamma_{\Lambda_{\rm b}(6152)^0} &=& 2.1 \, \pm 0.8 \, \pm 0.3 \, \, {\rm MeV} \,, \end{array}$

PRL 123 (2019) 152001

Key measurements @ Upgrade II

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II
EW Penguins				
$R_K (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	0.1 [274]	0.025	0.036	0.007
$R_{K^{*}}$ $(1 < q^{2} < 6 \mathrm{GeV}^{2}c^{4})$	0.1 275	0.031	0.032	0.008
$R_{\phi}, R_{pK}, R_{\pi}$	_	0.08,0.06,0.18	_	0.02,0.02,0.05
CKM tests				
γ , with $B_s^0 \to D_s^+ K^-$	$\binom{+17}{-22}^{\circ}$ [136]	4°	_	1°
γ , all modes	$(^{+5.0}_{-5.8})^{\circ}$ [167]	1.5°	1.5°	0.35°
$\sin 2\beta$, with $B^0 \to J/\psi K_s^0$	0.04 609	0.011	0.005	0.003
ϕ_s , with $B_s^0 \to J/\psi \phi$	49 mrad 44	14 mrad	_	4 mrad
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	170 mrad 49	35 mrad	_	$9 \mathrm{mrad}$
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	154 mrad 94	39 mrad	_	11 mrad
$a_{ m sl}^s$	33×10^{-4} [211]	$10 imes 10^{-4}$	_	$3 imes 10^{-4}$
$ V_{ub} / V_{cb} $	6% [201]	3%	1%	1%
$B^0_s, B^0 { ightarrow} \mu^+ \mu^-$				
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)} / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	90% [264]	34%	_	10%
$\tau_{B^0_{} \to \mu^+\mu^-}$	22% 264	8%	_	2%
$S_{\mu\mu}$	_	_	_	0.2
$b \to c \ell^- \bar{\nu}_l$ LUV studies				
$\overline{R(D^*)}$	0.026 [215, 217]	0.0072	0.005	0.002
$R(J/\psi)$	0.24 220	0.071	_	0.02
Charm				
$\overline{\Delta A_{CP}(KK - \pi\pi)}$	8.5×10^{-4} 613	$1.7 imes 10^{-4}$	$5.4 imes 10^{-4}$	$3.0 imes 10^{-5}$
$A_{\Gamma} (\approx x \sin \phi)$	2.8×10^{-4} 240	$4.3 imes 10^{-5}$	$3.5 imes10^{-4}$	$1.0 imes 10^{-5}$
$x\sin\phi$ from $D^0 \to K^+\pi^-$	13×10^{-4} 228	$3.2 imes10^{-4}$	$4.6 imes10^{-4}$	$8.0 imes 10^{-5}$
$x\sin\phi$ from multibody decays		$(K3\pi) 4.0 \times 10^{-5}$	$(K_{ m s}^0\pi\pi)~1.2 imes10^{-4}$	$(K3\pi) 8.0 \times 10^{-6}$

CKM matrix evolution

Now

By 2025 (23 fb⁻¹, Upgrade Ia)

By 2035 (300 fb⁻¹, Upgrade II)

Spectroscopy with 300 /fb

- Large data set will boost sensitivity in searches for heavy states
 - With small production sections
 - With suppressed decay rates

	LHCb			Belle II
Decay mode	$23\mathrm{fb}^{-1}$	$50{\rm fb}^{-1}$	$300 {\rm fb}^{-1}$	$50\mathrm{ab}^{-1}$
$B^+ \to X(3872) (\to J/\psi \pi^+ \pi^-) K^+$	14k	30k	180k	11k
$B^+ \rightarrow X(3872) (\rightarrow \psi(2S)\gamma) K^+$	500	1k	7k	4k
$B^0 \rightarrow \psi(2S) K^- \pi^+$	340k	700k	4M	140k
$B_c^+ \to D_s^+ D^0 \overline{D}{}^0$	10	20	100	
$\Lambda_b^0 ightarrow J/\psi p K^-$	340k	700k	$4\mathrm{M}$	
$\Xi_b^- \to J/\psi \Lambda K^-$	4k	10k	55k	
$\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$	7k	15k	90k	< 6k
$\Xi_{bc}^+ \to J/\psi \Xi_c^+$	50	100	600	

X(3872)

- X(3872):
 - $\chi_{c1}(2P)$? Differential production xsec similar as $\psi(2S)$; Preference of $\psi(2S)\gamma$ over $J/\psi \gamma$
 - Molecure? Mass close to DD* threshold; Isospin-violating decay to $J/\psi\rho$
 - Mixture?
- If a strong $\chi_{c1}(2P)$ component exists, $X(3872) \rightarrow \chi_c(1P)\pi^+\pi^-$ expected
 - $\chi_c(1P) \rightarrow J/\psi \gamma$ efficiency very low in current LHCb
 - A large sample from Upgrade II will help to establish such decay or to set UL

Amplitude analyses of exotic hadrons

- For resonances in b-decays, amplitude analyses help to determine the properties and to claim the existence
- Further test observed exotic states
 - Pc in $\Lambda_b \to J/\psi \ p \ K$
 - Z(4430) in $B \rightarrow \psi(2S)K\pi$
- With improved calorimetry:
 - Pc in $\Lambda_b \to \chi_{c1,2} \ p \ K$
- Pentaquark with strangeness
 - In $\Xi_b \to J/\psi \Lambda K$

Other exotic searches

- Isospin multiplet of pentaquark
 - $c\bar{c}udd$ in $\Lambda_b \to \Lambda_c D\overline{K^*}$

QQqq tetraquarks

… and nice surprises when we study the heavy hadron decays

The 6th workshop on the XYZ particles

Summary

- LHCb has been successfully running until 2018
- Upgrade I is ongoing; Planning for Upgrade II has started
 - with Chinese contributions!
- Opportunities for spectroscopy studies
- Ideas, proposals for the coming upgrade most welcome!

Thank you!

BACKUP

New tracking system

MIGHTY Tracker

Mighty Tracker Layout: x,y dimensions

Drivers of size

- Inner Tracker Ulb
 - Tracking ghost rate
 - Limited modification of SciFi
- Middle Tracker UII
 - Radiation damage and occupancy in SciFi

Chris Parkes, November 2019

Baseline six layers, total Upgrade Ib: ~5m² Upgrade II: ~20m²

TORCH

- Charged PID for low momentum
 *p*_T < 10 GeV with 10 ps timing
- 70 ps per photon for ~30 phots
- A first prototype built and tested in testbeam, using MCP-PMT

Not only pp, heavy ion, even fixed target

Unique sample enabled by noble gas injected to the beam pipe as target; inspired by the beam-gas imaging

